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About Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APMO) started from 1989.
The APMO contest consists of one four-hour paper consisting of five ques-

tions of varying difficulty and each having a maximum score of 7 points. Con-
testants should not have formally enrolled at a university (or equivalent post-
secondary institution) and they must be younger than 20 years of age on the
1st July of the year of the contest.

Every year, APMO is be held in the afternoon of the second Monday of
March for participating countries in the North and South Americas, and in
the morning of the second Tuesday of March for participating countries on the
Western Pacific and in Asia. The contest questions are to be collected from the
contestants at the end of the APMO and are to be kept confidential until the
Senior Coordinating Country posts them on the official APMO website. Addi-
tionally, each exam paper must contain a written legend, warning the students
not to discuss the problems over the internet until that date.
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1st APMO 1989

A1. ai are positive reals. s = a1 + ... + an. Prove that for any integer n > 1 we have 
(1 + a1) ... (1 + an) < 1 + s + s2/2! + ... + sn/n! . 

Solution

We use induction on n. For n = 2 the rhs is 1 + a1 + a2 + a1a2 + (a1
2 + a2

2)/2 > lhs. Assume the result is 
true for n. We note that, by the binomial theorem, for s and t positive we have sm+1 + (m+1) t sm < (s + 
t)m+1, and hence sm+1/(m+1)! + t sm/m! < (s + t)m+1/(m+1)! . Summing from m = 1 to n+1 we get (s + t) 
+ (s2/2! + t s/1!) + (s3/3! + t s2/2!) + ... + (sn+1/(n+1)! + t sn/n!) < (s + t) + (s + t)2/2! + ... + (s + 
t)n+1/(n+1)! . Adding 1 to each side gives that (1 + t)(1 + s + s2/2! + ... + sn/n!) < (1 + (s+t) + ... + 
(s+t)n+1/(n+1)! . Finally putting t = an+1 and using the the result for n gives the result for n+1. 

A2.  Prove that 5n2 = 36a2 + 18b2 + 6c2 has no integer solutions except a = b = c = n = 0. 

Solution

The rhs is divisible by 3, so 3 must divide n. So 5n2 - 36a2 - 18b2 is divisible by 9, so 3 must divide c. 
We can now divide out the factor 9 to get: 5m2 = 4a2 + 2b2 + 6d2. Now take m, a, b, d to be the 
solution with the smallest m, and consider residues mod 16. Squares = 0, 1, 4, or 9 mod 16. Clearly m 
is even so 5m2 = 0 or 4 mod 16. Similarly, 4a2 = 0 or 4 mod 16. Hence 2b2 + 6d2 = 0, 4 or 12 mod 16. 
But 2b2 = 0, 2 or 8 mod 16 and 6d2 = 0, 6 or 8 mod 16. Hence 2b2 + 6d2 = 0, 2, 6, 8, 10 or 14 mod 16. 
So it must be 0. So b and d are both even. So a cannot be even, otherwise m/2, a/2, b/2, d/2 would be a 
solution with smaller m/2 < m. 

So we can divide out the factor 4 and get: 5k2 = a2 + 2e2 + 6f2 with a odd. Hence k is also odd. So 5k2

- a2 = 4 or 12 mod 16. But we have just seen that 2e2 + 6 f2 cannot be 4 or 12 mod 16. So there are no 
solutions. 

A3.  ABC is a triangle. X lies on the segment AB so that AX/AB = 1/4. CX intersects the median 
from A at A' and the median from B at B''. Points B', C', A'', C'' are defined similarly. Find the area of 
the triangle A''B''C'' divided by the area of the triangle A'B'C'.

Solution

Answer: 25/49. 

Let M be the midpoint of AB. We use vectors center G. Take GA = A, GB = B, GC = C. Then GM = 
A/2 + B/2 and GX = 3/4 A + 1/4 C. Hence GA' = 2/5 A (showing it lies on GA) = 4/5 (3/4 A + 1/4 B) 
+ 1/5 C, since A + B + C = 0 (which shows it lies on CX). Similarly, GB'' = 4/7 (1/2 A + 1/2 C) 
(showing it lies on the median through B) = 2/7 A + 2/7 C = 5/7 (2/5 A) + 2/7 C (showing it lies on 
CA' and hence on CX). Hence GB'' = -2/7 B. So we have shown that GB'' is parallel to GB' and 5/7 
the length. The same applies to the distances from the centroid to the other vertices. Hence triangle 
A''B''C'' is similar to triangle A'B'C' and its area is 25/49 times the area of A'B'C'. 



A4.  Show that a graph with n vertices and k edges has at least k(4k - n2)/3n triangles. 

Solution

Label the points 1, 2, ... , n and let point i have degree di (no. of edges). Then if i and j are joined they 
have at least di + dj - 2 other edges between them, and these edges join them to n - 2 other points. So 
there must be at least di + dj - n triangles which have i and j as two vertices. Hence the total number of 
triangles must be at least ∑edges ij (di + dj - n)/3. But ∑edges ij (di + dj) = ∑ di

2, because each point i 
occurs in just di terms. Thus the total number of triangles is at least (∑ di

2)/3 - nk/3. But ∑ di
2 ≥ (∑ di) 

2/n (a special case of Chebyshev's inequality) = 4k2/n. Hence result. 

A5.  f is a strictly increasing real-valued function on the reals. It has inverse f-1. Find all possible f 
such that f(x) + f-1(x) = 2x for all x. 

Solution

Answer: f(x) = x + b for some fixed real b. 

Suppose for some a we have f(a) ≠ a. Then for some b ≠ 0 we have f(a) = a + b. Hence f(a + b) = a + 
2b (because f( f(a) ) + f-1( f(a) ) = 2 f(a), so f(a + b) + a = 2a + 2b ) and by two easy inductions, f(a + 
nb) = a + (n+1)b for all integers n (positive or negative). 

Now take any x between a and a + b. Suppose f(x) = x + c. The same argument shows that f(x + nc) = 
x + (n+1)c. Since f is strictly increasing x + c must lie between f(a) = a + b and f(a+b) = a + 2b. So by 
a simple induction x + nc must lie between a + nb and a + (n+1)b. So c lies between b + (x-a)/n and b 
+ (a+b-x)/n or all n. Hence c = b. Hence f(x) = x + b for all x. 

If there is no a for which f(a) ≠ a, then we have f(x) = x for all x. 

2nd APMO 1990

A1.  Given θ in the range (0, π) how many (incongruent) triangles ABC have angle A = θ, BC = 1, 
and the following four points concyclic: A, the centroid, the midpoint of AB and the midpoint of AC? 

Solution

Answer: 1 for θ ≤ 60 deg. Otherwise none. 

Let O be the circumcenter of ABC and R the circumradius, let M be the midpoint of BC, and let G be 
the centroid. We may regard A as free to move on the circumcircle, whilst O, B and C remain fixed. 
Let X be the point on MO such that MX/MO = 1/3. An expansion by a factor 3, center M, takes G to 
A and X to O, so G must lie on the circle center X radius R/3. 

The circle on diameter OA contains the midpoints of AB and AC (since if Z is one of the midpoints 



OZ is perpendicular to the corresponding side). So if G also lies on this circle then angle OGA = 90 
deg and hence angle MGO = 90 deg, so G must also lie on the circle diameter OM. Clearly the two 
circles for G either do not intersect in which case no triangle is possible which satisfies the condition 
or they intersect in one or two points. But if they intersect in two points, then corresponding triangles 
are obviously congruent (they just interchange B and C). So we have to find when the two circle 
intersect. 

Let the circle center X meet the line OXM at P and Q with P on the same side of X as M. Now OM = 
R cos θ, so XM = 1/3 R cos θ < 1/3 R = XP, so M always lies inside PQ. Now XO = 2/3 OM = 1/3 R 
(2 cos θ), so XQ = 1/3 R > XO iff 2 cos θ < 1 or θ > π/3. Thus if θ > π/3, then XQ > XO and so the 
circle diameter OM lies entirely inside the circle center X radius R/3 and so they cannot intersect. If θ 
= π/3, then the circles touch at O, giving the equilateral triangle as a solution. If θ < π/3, then the 
circles intersect giving one incongruent triangle satisfying the condition. 

A2.  x1, ... , xn are positive reals. sk is the sum of all products of k of the xi (for example, if n = 3, s1 = 
x1 + x2 + x3, s2 = x1x2 + x2x3 + x3x1, s3 = x1x2x3). Show that sksn-k ≥ (nCk)2 sn for 0 < k < n. 

Solution

Each of sk and sn-khave nCk terms. So we may multiply out the product sksn-k to get a sum of (nCk)2

terms. We now apply the arithmetic/geometric mean result. The product of all the terms must be a 
power of sn by symmetry and hence must be sn to the power of (nCk)2. So the geometric mean of the 
terms is just sn. Hence result. 

A3.  A triangle ABC has base AB = 1 and the altitude from C length h. What is the maximum 
possible product of the three altitudes? For which triangles is it achieved? 

Solution

Answer: for h ≤ 1/2, maximum product is h2, achieved by a triangle with right-angle at C; for h > 1/2, 
the maximum product is h3/(h2 + 1/4), achieved by the isosceles triangle (AC = BC). 

Solution by David Krumm

Let AC = b, BC = a, let the altitude from A have length x and the altitude from B have length y. Then 
ax = by = h, so hxy = h3/ab. But h = a sin B and b/sin B = 1/sin C, so h = ab sin C and the product hxy 
= h2 sin C. 

The locus of possible positions for C is the line parallel to AB and a distance h from it. [Or strictly the 
pair of such lines.] If h ≤ 1/2, then there is a point on that line with angle ACB = 90 deg, so in this 
case we can obtain hxy = h2 by taking angle ACB = 90 deg and that is clearly the best possible. 

If h > 1/2, then there is no point on the line with angle ACB = 90 deg. Let L be the perpendicular 
bisector of AB and let L meet the locus at C. Then C is the point on the locus with the angle C a 
maximum. For if D is any other point of the line then the circumcircle of ABD also passes through the 
corresponding point D' on the other side of C and hence C lies inside the circumcircle. If L meets the 
circumcircle at C', then angle ADB = angle AC'B > angle ACB. Evidently sin C = 2 sin C/2 cos C/2 = 



h/(h2 + 1/4), so the maximum value of hxy is h3/(h2 + 1/4). 

My original, less elegant, solution is as follows.

Take AP perpendicular to AB and length h. Take Q to be on the line parallel to AB through P so that 
BQ is perpendicular to AB. Then C must lie on the line PQ (or on the corresponding line on the other 
side of AB). Let a(A) be the length of the altitude from A to BC and a(B) the length of the altitude 
from B to AC. If C maximises the product h a(A) a(B), then it must lie on the segment PQ, for if 
angle ABC is obtuse, then both a(A) and a(B) are shorter than for ABQ. Similarly if BAC is obtuse. 
So suppose PC = x with 0 ≤ x ≤ 1. Then AC = √(x2 + h2), so a(B) = h/√(x2 + h2). Similarly, a(A) = 
h/√( (1-x)2 + h2). So we wish to minimise f(x) = (x2 + h2)( (1-x)2 + h2) = x4 - 2x3 + (2h2 + 1)x2 - 2h2x + 
h4 + h2. We have f '(x) = 2(2x-1)(x2 - x + h2), which has roots x = 1/2, 1/2 ± √(1/4 - h2). 

Thus for h >= 1/2, the minimum is at x = 1/2, in which case CA = CB. For h < 1/2, the minimum is at 
x = 1/2 ± √(1/4 - h2). But if M is the midpoint of AB and D is the point on AB with AD = 1/2 ± √(1/4 
- h2), then DM = √(1/4 - h2). But DC = h, and angle CDM = 90, so MC = 1/2 and hence angle ACB = 
90. 

A4.  A graph with n > 1 points satisfies the following conditions: (1) no point has edges to all the 
other points, (2) there are no triangles, (3) given any two points A, B such that there is no edge AB, 
there is exactly one point C such that there are edges AC and BC. Prove that each point has the same 
number of edges. Find the smallest possible n.

Solution

Answer: 5. 

We say A and B are joined if there is an edge AB. For any point X we write deg X for the number of 
points joined to X. Take any point A. Suppose deg A = m. So there are m points B1, B2, ... , Bm joined 
to A. No Bi, Bj can be joined for i ≠ j, by (2), and a point C ≠ A cannot be joined to Bi and Bj for i ≠ j, 
by (3). Hence there are deg Bi - 1 points Cij joined to Bi and all the Cij are distinct. 

Now the only points that can be joined to Cij, apart from Bi, are other Chk, for by (3) any point of the 
graph is connected to A by a path of length 1 or 2. But Cij cannot be joined to Cik, by (2), and it cannot 
be joined to two distinct points Ckh and Ckh' by (3), so it is joined to at most one point Ckh for each k ≠ 
i. But by (3) there must be a point X joined to both Bk and Cij (for k ≠ i), and the only points joined to 
Bk are A and Ckh. Hence Cij must be joined to at least one point Ckh for each k ≠ i. Hence deg Cij = m. 

But now if we started with Bi instead of A and repeated the whole argument we would establish that 
deg Bi is the same as the deg Chk, where Chk is one of the points joined to Ci1. Thus all the points have 
the same degree. 

Suppose the degree of each point is m. Then with the notation above there is 1 point A, m points Bi

and m(m-1) points Cjk or m2 + 1 in all. So n = m2 + 1. The smallest possible m is 1, but that does not 
yield a valid graph because if does not satisfy (1). The next smallest possibility is m = 2, giving 5 
points. It is easy to check that the pentagon satisfies all the conditions. 



A5.  Show that for any n ≥ 6 we can find a convex hexagon which can be divided into n congruent 
triangles. 

Solution

We use an isosceles trianglea as the unit. The diagram shows n = 4 and n = 5. We can get any n ≥ 4 by 
adding additional rhombi in the middle. 

3rd APMO 1991

A1.  ABC is a triangle. G is the centroid. The line parallel to BC through G meets AB at B' and AC at 
C'. Let A'' be the midpoint of BC, C'' the intersection of B'C and BG, and B'' the intersection of C'B 
and CG. Prove that A''B''C'' is similar to ABC. 

Solution

Let M be the midpoint of AB and N the midpoint of AC. Let A''M meet BG at X. Then X must be the 
midpoint of A''M (an expansion by a factor 2 center B takes A''M to CA and X to N). Also BX/BN = 
1/2 and BG/BN = 2/3, so XG = BX/3. Let the ray CX meet AB at Z. Then ZX = CX/3. (There must be 
a neat geometric argument for this, but if we take vectors origin B, then BX = BN/2 = BA/4 + BC/4, 
so BZ = BA/3 and so XZ = 1/3 (BA/4 - 3BC/4) = CX/3.) So now triangles BXC and ZXG are similar, 
so ZG is parallel to BC, so Z is B' and X is C''. But A''X is parallel to AC and 1/4 its length, so A''C'' 
is parallel to AC and 1/4 its length. Similarly A''B'' is parallel to AB and 1/4 its length. Hence A''B''C'' 
is similar to ABC. 

A2.  There are 997 points in the plane. Show that they have at least 1991 distinct midpoints. Is it 
possible to have exactly 1991 midpoints? 

Solution

Answer: yes. Take the 997 points collinear at coordinates x = 1, 3, ... , 1993. The midpoints are 2, 3, 
4, ... , 1992. 

Take two points A and B which are the maximum distance apart. Now consider the following 
midpoints: M, the midpoint of AB, the midpoint of each AX for any other X in the set (not A or B), 
and the midpoint of each BX. We claim that all these are distinct. Suppose X and Y are two other 
points (apart from A and B). Clearly the midpoints of AX and AY must be distinct (otherwise X and 
Y would coincide). Similarly the midpoints of BX and BY must be distinct. Equally, the midpoint of 
AX cannot be M (or X would coincide with B), nor can the midpoint of BX be M. Suppose, finally, 



that N is the midpoint of AX and BY. Then AYXB is a parallelogram and either AX or BY must 
exceed AB, contradicting the maximality of AB. So we have found 1991 distinct midpoints. The 
example above shows that there can be exactly 1991 midpoints. 

A3.  xi and yi are positive reals with ∑1
n xi = ∑1

n yi. Show that ∑1
n xi

2/(xi + yi) ≥ (∑1
n xi)/2. 

Solution

We use Cauchy-Schwartz: ∑ (x/√(x+y) )2 ∑ (√(x+y) )2 ≥ (∑ x )2. So ∑ x2/(x+y) >= (∑ x)2/(∑(x+y) = 
1/2 ∑ x

A4.  A sequence of values in the range 0, 1, 2, ... , k-1 is defined as follows: a1 = 1, an = an-1 + n (mod 
k). For which k does the sequence assume all k possible values? 

Solution

Let f(n) = n(n+1)/2, so an = f(n) mod k. If k is odd, then f(n+k) = f(n) mod k, so the sequence can only 
assume all possible values if a1, ... , ak are all distinct. But f(k-n) = f(n) mod k, so there are at most 
(k+1)/2 distinct values. Thus k odd does not work. 

If k is even, then f(n+2k) = f(n) mod k, so we need only look at the first 2k values. But f((2k-1-n) = 
f(n) mod k and f(2k-1) = 0 mod k, so the sequence assumes all values iff a1, a2, ... , ak-1 assume all the 
values 1, 2, ... , k-1. 

Checking the first few, we find k = 2, 4, 8, 16 work and k = 6, 10, 12, 14 do not. So this suggests that 
k must be a power of 2. Suppose k is a power of 2. If f(r) = f(s) mod k for some 0 < r, s < k, then (r -
s)(r + s + 1) = 0 mod k. But each factor is < k, so neither can be divisible by k. Hence both must be 
even. But that is impossible (because their sum is 2r+1 which is odd), so each of f(1), f(2), ... , f(k-1) 
must be distinct residues mod k. Obviously none can be 0 mod k (since 2k cannot divide r(r+1) for 0 
< r < k and so k cannot divide f(r) ). Thus they must include all the residues 1, 2, ... k-1. So k a power 
of 2 does work. 

Now suppose h divides k and k works. If f(n) = a mod k, then f(n) = a mod h, so h must also work. 
Since odd numbers do not work, that implies that k cannot have any odd factors. So if k works it must 
be a power of 2. 

A5.  Circles C and C' both touch the line AB at B. Show how to construct all possible circles which 
touch C and C' and pass through A. 

Solution

Take a common tangent touching C' at Q' and C at Q. Let the line from Q to A meet C again at P. Let 
the line from Q' to A meet C' again at P'. Let the C have center O and C' have center O'. Let the lines 
OP and O'P' meet at X. Take X as the center of the required circle. There are two common tangents, 
so this gives two circles, one enclosing C and C' and one not. 

To see that this construction works, invert wrt the circle on center A through B. C and C' go to 



themselves under the inversion. The common tangent goes to a circle through A touching C and C'. 
Hence the point at which it touches C must be P and the point at which it touches C' must be P'. 

4th APMO 1992

A1.  A triangle has sides a, b, c. Construct another triangle sides (-a + b + c)/2, (a - b + c)/2, (a + b -
c)/2. For which triangles can this process be repeated arbitrarily many times? 

Solution

Answer: equilateral. 

We may ignore the factor 1/2, since clearly a triangle with sides x, y, z can be constructed iff a 
triangle with sides 2x, 2y, 2z can be constructed. 

The advantage of considering the process as generating (-a + b + c), (a - b + c), (a + b - c) from a, b, c 
is that the sum of the sides remains unchanged at a + b + c, so we can focus on just one of the three 
sides. Thus we are looking at the sequence a, (a + b + c) - 2a, a + b + c - 2(-a + b + c), ... . Let d = 2a -
b - c. We show that the process generates the sequence a, a - d, a + d, a - 3d, a + 5d, a - 11d, a + 21d, 
... . Let the nth term be a + (-1)nand. We claim that an+1 = 2an + (-1)n. This is an easy induction, for we 
have a + (-1)n+1an+1d = a + b + c - 2(a + (-1)nand) and hence (-1)n+1an+1d = -d - 2(-1)nand, and hence 
an+1 = 2an + (-1)n. But this shows that an is unbounded. Hence if d is non-zero then the process 
ultimately generates a negative number. Thus a necessary condition for the process to generate 
triangles indefinitely is that 2a = b + c. Similarly, 2b = c + a is a necessary condition. But these two 
equations imply (subtracting) a = b and hence a = c. So a necessary condition is that the triangle is 
equilateral. But this is obviously also sufficient. 

A2.  Given a circle C centre O. A circle C' has centre X inside C and touches C at A. Another circle 
has centre Y inside C and touches C at B and touches C' at Z. Prove that the lines XB, YA and OZ are 
concurrent. 

Solution

We need Ceva's theorem, which states that given points D, E, F on the lines BC, CA, AB, the lines 
AD, BE, CF are concurrent iff (BD/DC) (CE/EA) (AF/FB) = 1 (where we pay attention to the signs of 
BD etc, so that BD is negative if D lies on the opposite side of B to C). Here we look at the triangle 
OXY, and the points A on OX, B on OY and Z on XY (it is obvious that Z does lie on XY). We need 
to consider (OA/AX) (XZ/ZY) (YB/BO). AX and BY are negative and the other distances positive, so 
the sign is plus. Also OA = OB, AX = XZ, and ZY = YB (ignoring signs), so the expression is 1. 
Hence AY, XB and OZ are concurrent as required. 

A3.  Given three positive integers a, b, c, we can derive 8 numbers using one addition and one 
multiplication and using each number just once: a+b+c, a+bc, b+ac, c+ab, (a+b)c, (b+c)a, (c+a)b, abc. 
Show that if a, b, c are distinct positive integers such that n/2 < a, b, c, ≤ n, then the 8 derived 



numbers are all different. Show that if p is prime and n ≥ p2, then there are just d(p-1) ways of 
choosing two distinct numbers b, c from {p+1, p+2, ... , n} so that the 8 numbers derived from p, b, c 
are not all distinct, where d(p-1) is the number of positive divisors of p-1. 

Solution

If 1 < a < b < c, we have a + b + c < ab + c < b + ac < a + bc and (b+c)a < (a+c)b < (a+b)c < abc. We 
also have b + ac < (a+c)b. So we just have to consider whether a + bc = (b+c)a. But if a > c/2, which 
is certainly the case if n/2 < a, b, c ≤ n, then a(b + c - 1) > c/2 (b + b) = bc, so a + bc < a(b + c) and all 
8 numbers are different. 

The numbers are not all distinct iff p + bc = (b + c)p. Put b = p + d. Then c = p(p-1)/d + p. Now we 
are assuming that b < c, so p + d < p(p-1)/d + p, hence d2 < p(p-1), so d < p. But p is prime so d 
cannot divide p, so it must divide p-1. So we get exactly d(p-1) solutions provided that all the c ≤ n. 
The largest c is that corresponding to d = 1 and is p(p-1) + p = p2 ≤ n. 

A4.  Find all possible pairs of positive integers (m, n) so that if you draw n lines which intersect in 
n(n-1)/2 distinct points and m parallel lines which meet the n lines in a further mn points (distinct 
from each other and from the first n(n-1)/2) points, then you form exactly 1992 regions. 

Solution

Answer: (1, 995), (10, 176), (21, 80). 

n lines in general position divide the plane into n(n+1)/2 + 1 regions and each of the m parallel lines 
adds a further n+1 regions. So we require n(n+1)/2 + 1 + m(n+1) = 1992 or (n+1)(2m+n) = 3982 = 
2·11·181. So n+1 must divide 3982, also (n+1)n < 3982, so n ≤ 62. We are also told that n is positive 
Thus n = 0 is disallowed. The remaining possibilities are n+1 = 2, 11, 2·11. These give the three 
solutions shown above. 

A5.  a1, a2, a3, ... an is a sequence of non-zero integers such that the sum of any 7 consecutive terms is 
positive and the sum of any 11 consecutive terms is negative. What is the largest possible value for n? 

Solution

Answer: 16. 

We cannot have 17 terms, because then: 

a1 + a2 + ... + a11 < 0
a2 + a3 + ... + a12 < 0
a3 + a4 + ... + a13 < 0
...
a7 + a8 + ... + a17 < 0
So if we add the inequalities we get that an expression is negative. But notice that each column is 
positive. Contradiction. 

On the other hand, a valid sequence of 16 terms is: -5, -5, 13, -5, -5, -5, 13, -5, -5, 13, -5, -5, -5, 13, -5, 



-5. Any run of 7 terms has two 13s and five -5s, so sums to 1. Any run of 11 terms has three 13s and 
eight -5s, so sums to -1

5th APMO 1993

A1.  A, B, C is a triangle. X, Y, Z lie on the sides BC, CA, AB respectively, so that AYZ and XYZ 
are equilateral. BY and CZ meet at K. Prove that YZ2 = YK.YB. 

Solution

Use vectors. Take A as the origin. Let AZ = b, AY = c. We may take the equilateral triangles to have 
side 1, so b2 = c2 = 1 and b.c = 1/2. Take AB to be k b. AX is b + c, so AC must be k/(k-1) c (then 
AX = 1/k (k b) + (1 - 1/k) ( k/(k-1) c), which shows that X lies on BC). 

Hence AK = k/(k2 - k + 1) (b + (k-1) c). Writing this as (k2-k)/(k2-k+1) c + 1/(k2-k+1) (k b) shows 
that it lies on BY and writing it as k/(k2-k+1) b + (k2-2k+1) ( k/(k-1) c) shows that it lies on CZ. 
Hence YK.YB = YK.YB= ( k/(k2-k+1) b - 1/(k2-k+1) c) . ( k b - c) = (k b - c)2/(k2-k+1) = 1 = YZ2. 

Thank to Achilleas Porfyriadis for the following geometric proof

BZX and XYC are similar (sides parallel), so BZ/ZX = XY/YC. But XYZ is equilateral, so BZ/ZY = 
ZY/YC. Also ∠BZY = ∠ZYC = 120o, so BZY and ZYC are similar. Hence ∠ZBY = ∠YZC. 
Hence YZ is tangent to the circle ZBK. Hence YZ2 = YK·YB 

A2.  How many different values are taken by the expression [x] + [2x] + [5x/3] + [3x]+ [4x] for real x 
in the range 0 ≤ x ≤ 100? 

Solution

Answer: 734. 

Let f(x) = [x] + [2x] + [3x] + [4x] and g(x) = f(x) + [5x/3]. Since [y+n] = n + [y] for any integer n and 
real y, we have that f(x+1) = f(x) + 10. So for f it is sufficient to look at the half-open interval [0, 1). f 
is obviously monotonic increasing and its value jumps at x = 0, 1/4, 1/3, 1/2, 2/3, 3/4. Thus f(x) takes 
6 different values on [0, 1). 

g(x+3) = g(x), so for g we need to look at the half-open interval [0, 3). g jumps at the points at which f 



jumps plus 4 additional points: 3/5, 1 1/5, 1 4/5, 2 2/5. So on [0, 3), g(x) takes 3 x 6 + 4 = 22 different 
values. Hence on [0, 99), g(x) takes 33 x 22 = 726 different values. Then on [99, 100] it takes a 
further 6 + 1 + 1 (namely g(99), g(99 1/4), g(99 1/3), g(99 1/2), g(99 3/5), g(99 2/3), g(99 3/4), g(100) 
). Thus in total g takes 726 + 8 = 734 different values. 

A3.  p(x) = (x + a) q(x) is a real polynomial of degree n. The largest absolute value of the coefficients 
of p(x) is h and the largest absolute value of the coefficients of q(x) is k. Prove that k ≤ hn. 

Solution

Let p(x) = p0 + p1x + ... + pnx
n, q(x) = q0 + q1x + ... + qn-1x

n-1, so h = max |pi|, k = max |qi|. 

If a = 0, then the result is trivial. So assume a is non-zero. We have pn = qn-1, pn-1 = qn-2 + aqn-1, pn-2 = 
qn-3 + aqn-2, ... , p1 = q0 + aq1, p0 = aq0. 

We consider two cases. Suppose first that |a| ≥ 1. Then we show by induction that |qi| ≤ (i+1) h. We 
have q0 = p0/a, so |q0| ≤ h, which establishes the result for i = 0. Suppose it is true for i. We have qi+1 = 
(pi+1 - qi)/a, so |qi+1| ≤ |pi+1| + |qi| ≤ h + (i+1)h = (i+2)h, so it is true for i+1. Hence it is true for all i < n. 
So k ≤ max(h, 2h, ... , nh) = nh. 

The remaining possibility is 0 < |a| < 1. In this case we show by induction that |qn-i| ≤ ih. We have qn-1

= pn, so |qn-1| ≤ |pn| ≤ h, which establishes the result for i = 1. Suppose it is true for i. We have qn-i-1 = 
pn-i - aqn-i, so |qn-i-1n-i| + |qn-i| ≤ h + ih = (i+1)h, so it is true for i+1. Hence it is true for all 1 ≤ i ≤ n. Hence k ≤ max(h, 2h, ... , nh) = nh. 

A4.  Find all positive integers n for which xn + (x+2)n + (2-x)n = 0 has an integral solution. 

Solution

Answer: n = 1. 

There are obviously no solutions for even n, because then all terms are non-negative and at least one 
is positive. x = -4 is a solution for n = 1. So suppose n is odd n and > 3. 

If x is positive, then xn + (x+2)n > (x+2)n > (x-2)n, so xn + (x+2)n + (2-x)n > 0. Hence any solution x 
must be negative. Put x = -y. Clearly x = -1 is not a solution for any n, so if x = -y is a solution then 
(x+2) = -(y-2) ≤ 0 we have (y+2)n = yn + (y-2)n. Now 4 = ( (y+2) - (y-2) ) divides (y+2)n - (y-2)n. 
Hence 2 divides y. Put y = 2z, then we have (z+1)n = zn + (z-1)n. Now 2 divides (z+1)n - (z-1)n so 2 
divides z, so z+1 and z-1 are both odd. But an - bn = (a - b)(an-1n-2b + an-3b2 + ... + bn-1). If a and b are 
both odd, then each term in (an-1n-2b + an-3b2 + ... + bn-1) is odd and since n is odd there are an odd 
number of terms, so (an-1n-2b + an-3b2 + ... + bn-1) is odd. Hence, putting a=z+1, b=z-1, we see that 
(z+1)n - (z-1)n = 2(an-1n-2b + an-3b2 + ... + bn-1) is not divisible by 4. But it equals zn with z even. 
Hence n must be 1

A5.  C is a 1993-gon of lattice points in the plane (not necessarily convex). Each side of C has no 
lattice points except the two vertices. Prove that at least one side contains a point (x, y) with 2x and 2y 
both odd integers. 



Solution

We consider the midpoint of each side. We say that a vertex (x, y) is pure if x and y have the same 
parity and impure if x and y have opposite parity. Since the total number of vertices is odd, there must 
be two adjacent pure vertices P and Q or two adjacent impure vertices P and Q. But in either case the 
midpoint of P and Q either has both coordinates integers, which we are told does not happen, or as 
both coordinates of the form an integer plus half, which therefore must occur. 

6th APMO 1994

A1.  Find all real-valued functions f on the reals such that (1) f(1) = 1, (2) f(-1) = -1, (3) f(x) ≤ f(0) for 
0 < x < 1, (4) f(x + y) ≥ f(x) + f(y) for all x, y, (5) f(x + y) ≤ f(x) + f(y) + 1 for all x, y.

Solution

Answer: f(x) = [x]. 

f(x+1) >= f(x) + f(1) = f(x) + 1 by (4) and (1). But f(x) ≥ f(x+1) + f(-1) = f(x+1) - 1 by (4) and (2). 
Hence f(x+1) = f(x) + 1. 

In particular, 1 = f(1) = f(0+1) = f(0) + 1, so f(0) = 0. Hence, by (3), f(x) ≤ 0 for 0 < x < 1. But, by (5), 
1 = f(1) = f(x + 1-x) ≤ f(x) + f(1-x) + 1, so f(x) + f(1-x) ≥ 0. But if 0 < x < 1, then also 0 < 1-x < 1, so 
f(x) = f(1-x) = 0. 

Thus we have established that f(x) = 0 for 0 ≤ x < 1, and f(x+1) = f(x) + 1. It follows that f(x) = [x] for 
all x. 

A2.  ABC is a triangle and A, B, C are not collinear. Prove that the distance between the orthocenter 
and the circumcenter is less than three times the circumradius. 

Solution

We use vectors. It is well-known that the circumcenter O, the centroid G and the orthocenter H lie on 
the Euler line and that OH = 3 OG. Hence taking vectors with origin O, OH = 3 OG = OA + OB + 
OC. Hence |OH| ≤ |OA| + |OB| + |OC| = 3 x circumradius. We could have equality only if ABC were 
collinear, but that is impossible, because ABC would not then be a triangle. 

A3.  Find all positive integers n such that n = a2 + b2, where a and b are relatively prime positive 
integers, and every prime not exceeding √n divides ab. 

Solution



Answer: 2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32. 

The key is to use the fact that a and b are relatively prime. We show in fact that they must differ by 1 
(or 0). Suppose first that a = b. Then since they are relatively prime they must both be 1. That gives 
the first answer above. So we may take a > b. Then (a - b)2 < a2 + b2 = n, so if a - b is not 1, it must 
have a prime factor which divides ab. But then it must divide a or b and hence both. Contradiction. So 
a = b + 1. 

Now (b - 1)2 < b2 < n, so any prime factor p of b - 1 must divide ab = b(b + 1). It cannot divide b (or it 
would divide b and b - 1 and hence 1), so it must divide b + 1 and hence must be 2. But if 4 divides b 
- 1, then 4 does not divide b(b - 1), so b - 1 must be 0, 1 or 2. But it is now easy to check the cases a, b 
= (4, 3), (3, 2), (2, 1). 

A4.  Can you find infinitely many points in the plane such that the distance between any two is 
rational and no three are collinear? 

Solution

Answer: yes. 

Let θ = cos-13/5. Take a circle center O radius 1 and a point X on the circle. Take Pn on the circle such 
that angle XOPn = 2nθ. We establish (A) that the Pn are all distinct and (B) that the distances PmPn are 
all rational. 

We establish first that we can express 2 cos nx as a polynomial of degree n in (2 cos x) with integer 
coefficients and leading coefficient 1. For example, 2 cos 2x = (2 cos x)2 - 1, 2 cos 3x = (2 cos x)3 - 3 
(2 cos x). We proceed by induction. Let the polynomial be pn(2 cos x). We have that p1(y) = y and 
p2(y) = y2 - 1. Suppose we have found pm for m ≤ n. Now cos(n+1)x = cos nx cos x - sin nx sin x, and 
cos(n-1)x = cos nx cos x + sin nx sin x, so cos(n+1)x = 2 cos x cos nx - cos(n-1)x. Hence pn+1(y) = y 
pn(y) - pn-1(y). Hence the result is also true for n+1. 

It follows that (1) if cos x is rational, then so is cos nx, and (2) if cos x is rational, then x/π is 
irrational. To see (2), suppose that x/π = m/n, with m and n integers. Then nx is a multiple of π and 
hence cos nx = 0, so pn(2 cos x) = 0. Now we may write pn(y) = yn + an-1yn-1 + ... + a0. Now if also cos 
x = r/s, with r and s relatively prime integers, then we have, pn(2 cos x) = rn + an-1s rn-1 + ... + a0s

n = 0. 
But now s divides all terms except the first. Contradiction. 

Thus we cannot have cos mθ = cos nθ for any distinct integers m, n, for then θ/π would be rational as 
well as cos θ. So we have established (A). 

We have also established that all cos nθ are rational. But since sin(n+1)x = sin nx cos x + cos nx sin x 
and sin θ = 4/5, it is a trivial induction that all sin nθ are also rational. Now PmPn = 2 |sin(m - n)θ|, so 
all the distances PmPn are rational, thus establishing (B). 

A5.  Prove that for any n > 1 there is either a power of 10 with n digits in base 2 or a power of 10 with 
n digits in base 5, but not both. 



Solution

10k has n digits in base 5 iff 5n-1 < 10k < 5n. Similarly, 10h has n digits in base 2 iff 2n-1 < 10h < 2n. So 
if we can find both 10k with n digits in base 5 and 10h with n digits in base 2, then, multiplying the 
two inequalities, we have 10n-1 < 10h+k < 10n, which is clearly impossible. This establishes the "but 
not both" part. 

Let S be the set of all positive powers of 2 or 5. Order the members of S in the usual way and let an be 
the n-1th member of the set. We claim that if an = 2k, then 10k has n digits in base 5, and if an = 5h, 
then 10h has n digits in base 2. We use induction on n. 

a2 = 21, a3 = 22, a4 = 51, a5 = 23, ... . Thus the claim is certainly true for n = 2. Suppose it is true for n. 

Note that 10k has n digits in base 5 iff 5n-k-1 < 2k < 5n-k. Similarly, 10h has n digits in base 2 iff 2n-h-1 < 
5h < 2n-h. There are 3 cases. Case (1). an = 2k and an+1 = 2k+1. Hence 10k+1 has n+1 digits in base 5. 
Case (2). an = 2k and an+1 is a power of 5. Hence an+1 must be 5n-k. Hence 2k < 5n-k < 2k+1. Hence 2n <
10n-k < 2n+1. So 10n-k has n+1 digits in base 2. Case (3). an = 5h. Since there is always a power of 2 
between two powers of 5, an+1 must be a power of 2. Hence it must be 2n-h. So we have 5h < 2n-h < 
5h+1. So 5n < 10n-h < 5n+1 and hence 10n-h has n+1 digits in base 5. 

Jacob Tsimerman pointed out that the second part can be done in a similar way to the first - which is 
neater than the above:

If no power of 10 has n digits in base 2 or 5, then for some h, k: 10h < 2n-1 < 2n < 10h+1 and 10k < 5n-1

< 5n < 10k+1. Hence 10h+k < 10n-1 < 10n < 10h+k+2. But there is only one power of 10 between h+k and 
h+k+2. 

7th APMO 1995

A1.  Find all real sequences x1, x2, ... , x1995 which satisfy 2√(xn - n + 1) ≥ xn+1 - n + 1 for n = 1, 2, ... , 
1994, and 2√(x1995 - 1994) ≥ x1 + 1. 

Solution

Answer: the only such sequence is 1, 2, 3, ... , 1995. 

Put x1995 = 1995 + k. We show by induction (moving downwards from 1995) that xn ≥ n + k. For 
suppose xn+1 ≥ n + k + 1, then 4(xn - n + 1) ≥ (xn+1- n + 1)2 ≥ (k+2)2 ≥ 4k + 4, so xn ≥ n + k. So the 
result is true for all n ≥ 1. In particular, x1 ≥ 1 + k. Hence 4(x1995 - 1994) = 4(1 + k) ≥ (2 + k)2 = 4 + 4k 
+ k2, so k2 ≤ 0, so k = 0. 

Hence also xn ≥ n for n = 1, 2, ... , 1994. But now if xn = n + k, with k > 0, for some n < 1995, then the 
same argument shows that x1 ≥ 1 + k and hence 4 = 4(x1995 - 1994) ≥ (x1 + 1)2 ≥ (2 + k)2 = 4 + 4k + k2

> 4. Contradiction. Hence xn = n for all n ≤ 1995. 



A2.  Find the smallest n such that any sequence a1, a2, ... , an whose values are relatively prime square-
free integers between 2 and 1995 must contain a prime. [An integer is square-free if it is not divisible 
by any square except 1.] 

Solution

Answer: n = 14. 

We can exhibit a sequence with 13 terms which does not contain a prime: 2·101 = 202, 3·97 = 291, 
5·89 = 445, 7·83 = 581, 11·79 = 869, 13·73 = 949, 17·71 = 1207, 19·67 = 1273, 23·61 = 1403, 29·59 
= 1711, 31·53 = 1643, 37·47 = 1739, 41·43 = 1763. So certainly n ≥ 14. 

If there is a sequence with n ≥ 14 not containing any primes, then since there are only 13 primes not 
exceeding 41, at least one member of the sequence must have at least two prime factors exceeding 41. 
Hence it must be at least 43·47 = 2021 which exceeds 1995. So n =14 is impossible. 

A3.  ABCD is a fixed cyclic quadrilateral with AB not parallel to CD. Find the locus of points P for 
which we can find circles through AB and CD touching at P. 

Solution

Answer: Let the lines AB and CD meet at X. Let R be the length of a tangent from X to the circle 
ABCD. The locus is the circle center X radius R. [Strictly you must exclude four points unless you 
allow the degenerate straight line circles.] 

Let X be the intersection of the lines AB and CD. Let R be the length of a tangent from X to the circle 
ABCD. Let C0 be the circle center X radius R. Take any point P on C0. Then considering the original 
circle ABCD, we have that R2 = XA·XB = XC·XD, and hence XP2 = XA·XB = XC·XD. 

If C1 is the circle through C, D and P, then XC.XD = XP2, so XP is tangent to the circle C1. Similarly, 
the circle C2 through A, B and P is tangent to XP. Hence C1 and C2 are tangent to each other at P. 
Note that if P is one of the 4 points on AB or CD and C0, then this construction does not work unless 
we allow the degenerate straight line circles AB and CD. 

So we have established that all (or all but 4) points of C0 lie on the locus. But for any given circle 
through C, D, there are only two circles through A, B which touch it (this is clear if you consider how 
the circle through A, B changes as its center moves along the perpendicular bisector of AB), so there 
are at most 2 points on the locus lying on a given circle through C, D. But these are just the two points 
of intersection of the circle with C0. So there are no points on the locus not on C0.

A4.  Take a fixed point P inside a fixed circle. Take a pair of perpendicular chords AC, BD through P. 
Take Q to be one of the four points such that AQBP, BQCP, CQDP or DQAP is a rectangle. Find the 
locus of all possible Q for all possible such chords. 

Solution

Let O be the center of the fixed circle and let X be the center of the rectangle ASCQ. By the cosine 



rule we have OQ2 = OX2 + XQ2 - 2·OX·XQ cos θ and OP2 = OX2 + XP2 - 2·OX·XP cos(θ+π), where 
θ is the angle OXQ. But cos(θ+π) = -cos θ, so OQ2 + OP2= 2OX2 + 2XQ2. But since X is the center of 
the rectangle XQ = XC and since X is the midpoint of AC, OX is perpendicular to AC and hence XO2

+ XC2 = OC2. So OQ2 = 2OC2 - OP2. But this quantity is fixed, so Q must lie on the circle center O 
radius √(2R2 - OP2), where R is the radius of the circle. 

Conversely, it is easy to see that all points on this circle can be reached. For given a point Q on the 
circle radius √(2R2 - OP2) let X be the midpoint of PQ. Then take the chord AC to have X as its 
midpoint. 

A5.  f is a function from the integers to {1, 2, 3, ... , n} such that f(A) and f(B) are unequal whenever 
A and B differ by 5, 7 or 12. What is the smallest possible n? 

Solution

Answer: n = 4. 

Each pair of 0, 5, 12 differ by 5, 7 or 12, so f(0), f(5), f(12) must all be different, so n ≥ 3. 

We can exhibit an f with n = 4. Define f(m) = 1 for m = 1, 3, 5, 7, 9, 11 (mod 24), f(m) = 2 for m = 2, 
4, 6, 8, 10, 12 (mod 24), f(m) = 3 for m = 13, 15, 17, 19, 21, 23 (mod 24), f(m) = 4 for m = 14, 16, 18, 
20, 22, 0 (mod 24). 

8th APMO 1996

A1.  ABCD is a fixed rhombus. P lies on AB and Q on BC, so that PQ is perpendicular to BD. 
Similarly P' lies on AD and Q' on CD, so that P'Q' is perpendicular to BD. The distance between PQ 
and P'Q' is more than BD/2. Show that the perimeter of the hexagon APQCQ'P' depends only on the 
distance between PQ and P'Q'. 

Solution

BPQ and DQ'P' are similar. Let PQ meet BD at X and P'Q' meet BD at Y. XY is fixed, so BX + DY is 
fixed. Hence also, BP + DQ' and BQ + DP' and PQ + P'Q' are fixed. So PQ + P'Q' - BP - BQ - DP' -
DQ' is fixed, so PQ + P'Q' + (AB - BP) + (BC - BQ) + (CD - DP') + (DA - DQ') is fixed, and that is 
the perimeter of the hexagon.

A2.  Prove that (n+1)mnm ≥ (n+m)!/(n-m)! ≥ 2mm! for all positive integers n, m with n ≥ m. 

Solution

For any integer k ≥ 1, we have (n + k)(n - k + 1) = n2 + n - k2 + k ≤ n(n + 1). Taking the product from 
k = 1 to m we get (n + m)!/(n - m)! ≤ (n + 1)mnm. 

For k = 1, 2, ... , m, we have n ≥ k and hence n + k ≥ 2k. Taking the product from k = 1 to m, we get 



(n + m)!/(n - m)! ≥ 2mm! . 

A3.  Given four concyclic points. For each subset of three points take the incenter. Show that the four 
incenters from a rectangle. 

Solution

Take the points as A, B, C, D in that order. Let I be the incenter of ABC. The ray CI bisects the angle 
ACB, so it passes through M, the midpoint of the arc AB. Now ∠MBI = ∠MBA + ∠IBA = ∠MCA 
+ ∠IBA = (∠ACB + ∠ABC)/2 = 90o - (∠CAB) /2 = 90o - ∠CMB/2 = 90o - ∠IMB/2. So the 
bisector of ∠IMB is perpendicular to IB. Hence MB = MI. Let J be the incenter of ABD. Then 
similarly MA = MJ. But MA = MB, so the four points A, B, I, J are concyclic (they lie on the circle 
center M). Hence ∠BIJ = 180o - ∠BAJ = 180o - ∠BAD/2. 

Similarly, if K is the incenter of ADC, then ∠BJK = 180o - ∠BDC/2. Hence ∠IJK = 360o - ∠BIJ -
∠BJK = (180o - ∠BIJ) + (180o - ∠BJK) = (∠BAD + ∠BDC)/2 = 90o. Similarly, the other angles 
of the incenter quadrilateral are 90o, so it is a rectangle. 

A4.  For which n in the range 1 to 1996 is it possible to divide n married couples into exactly 17 
single sex groups, so that the size of any two groups differs by at most one. 

Solution

Answer: 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 36, 37, 38, 39, 
40, 45, 46, 47, 48, 54, 55, 56, 63, 64, 72. 

If n = 17k, then the group size must be 2k. Hence no arrangement is possible, because one sex has at 
most 8 groups and 8.2k < n. 

If 2n = 17k+h with 0 < h < 17, then the group size must be k or k+1. One sex has at most 8 groups, so 
8(k+1) ≥ n. Hence 16k + 16 ≥ 17k + h, so 16 - h ≥ k (*). We also require that 9k ≤ n. Hence 18k < 2n 
= 17k + h, so k ≤ h (**). With (*) this implies that k ≤ 8. So n ≤ 75. 

Each group has at least one person, so we certainly require n ≥ 9 and hence k ≥ 1. It is now easiest to 
enumerate. For k = 1, we can have h = 1, 3, ... 15, giving n = 9-16. For k = 2, we can have h = 2, 4, ... 
14, giving n = 18-24. For k = 3, we can have h = 3, 5, ... 13, giving n = 27-32. For k = 4, we can have 
h = 4, 6, ... 12, giving n = 36-40. For k = 5 we can have h = 5, 7, 9, 11, giving n = 45-48. For k = 6, 
we can have h = 6, 8, 10, giving n = 54, 55, 56. For k = 7, we can have h = 7, 9, giving n = 63, 64. For 
k = 8, we can have h = 8, giving n = 72. 

A5.  A triangle has side lengths a, b, c. Prove that √(a + b - c) + √(b + c - a) + √(c + a - b) ≤ √a + √b + 
√c. When do you have equality? 

Solution

Let A2 = b + c - a, B2 = c + a - b, C2 = a + b - c. Then A2 + B2 = 2c. Also A = B iff a = b. We have (A 



- B)2 ≥ 0, with equality iff A = B. Hence A2 + B2 ≥ 2AB and so 2(A2 + B2) ≥ (A + B)2 or 4c ≥ (A + 
B)2 or 2√c ≥ A + B, with equality iff A = B. Adding the two similar relations we get the desired 
inequality, with equality iff the triangle is equilateral

9th APMO 1997

A1.  Let Tn = 1 + 2 + ... + n = n(n+1)/2. Let Sn= 1/T1 + 1/T2 + ... + 1/Tn. Prove that 1/S1 + 1/S2 + ... + 
1/S1996 > 1001. 

Solution

1/Tm = 2(1/m - 1/(m+1) ). Hence Sn/2 = 1 - 1/(n+1). So 1/Sn = (1 + 1/n)/2. Hence 1/S1 + 1/S2 + ... + 
1/Sn = 1996/2 + (1+ 1/2 + 1/3 + ... + 1/1996)/2. 

Now 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + ... + 1/16) + (1/17 + ... + 1/32) + (1/33 + 
... + 1/64) + (1/65 + ... + 1/128) + (1/129 + ... + 1/256) + (1/257 + ... + 1/512) + (1/513 + ... + 1/1024) 
> 1 + 1/2 + 1/2 + ... + 1/2 = 6. So 1/S1 + 1/S2 + ... + 1/Sn = 1996/2 + 6/2 = 998 + 3 = 1001. 

A2.  Find an n in the range 100, 101, ... , 1997 such that n divides 2n + 2. 

Solution

Answer: the only such number is 946. 

We have 2p-1 = 1 mod p for any prime p, so if we can find h in {1, 2, ... , p-2} for which 2h = -2 mod 
p, then 2k= -2 mod p for any h = k mod p. Thus we find that 2k = -2 mod 5 for k = 3 mod 4, and 2k = -
2 mod 11 for k = 6 mod 10. So we might then hope that 5·11 = 3 mod 4 and = 6 mod 10. 
Unfortunately, it does not! But we try searching for more examples. 

The simplest would be to look at pq. Suppose first that p and q are both odd, so that pq is odd. If k = h 
mod p-1, then we need h to be odd (otherwise pq would have to be even). So the first step is to get a 
list of primes p with 2h = -2 mod p for some odd h < p. We always have 2p-1 = 1 mod p, so we 
sometimes have 2(p-1)/2 = -1 mod p and hence 2(p+1)/2 = -2 mod p. If (p+1)/2 is to be odd then p =1 mod 
4. So searching such primes we find 3 mod 5, 7 mod 13, 15 mod 29, 19 mod 37, 27 mod 53, 31 mod 
61. We require pq to lie in the range 100-1997, so we check 5·29 (not = 3 mod 4), 5·37 (not = 3 mod 
4), 5·53 (not = 3 mod 4), 5·61 (not = 3 mod 4), 13·29 (not = 7 mod 12), 13·37 (not = 7 mod 12), 
13.53 (not = 7 mod 12), 13·61 (not = 7 mod 12), 29·37 (not = 15 mod 28), 29·53 (not = 15 mod 28), 
29·61 (not = 15 mod 28), 37·53 (not = 19 mod 36). So that does not advance matters much! 

2p will not work (at least with h = (p+1)/2) because we cannot have 2p = (p+1)/2 mod p-1. So we try 
looking at 2pq. This requires that p and q = 3 mod 4. So searching for suitable p we find 6 mod 11, 10 
mod 19, 22 mod 43, 30 mod 59, 34 mod 67, 42 mod 83. So we look at 2·11·43 = 946, which works. 

Proving that it is unique is harder. The easiest way is to use a computer to search (approx 5 min to 
write a Maple program or similar and a few seconds to run it). 



A3.  ABC is a triangle. The bisector of A meets the segment BC at X and the circumcircle at Y. Let rA

= AX/AY. Define rB and rC similarly. Prove that rA/sin2A + rB/sin2B + rC/sin2C ≥ 3 with equality iff 
the triangle is equilateral. 

Solution

AX/AB = sin B/sin AXB = sin B/sin(180 - B - A/2) =sin B/sin(B + A/2). Similarly, AB/AY = sin 
AYB/sin ABY = sin C/sin(B + CBY) = sin C/sin(B + A/2). So AX/AY = sin B sin C/sin2(B + A/2). 
Hence rA/sin2A = sA/sin2(B + A/2), where sA = sin B sin C/sin2A. Similarly for rB and rC. Now sAsBsC

= 1, so the arithmetic/geometric mean result gives sA + sB + sC ≥ 3. But 1/sin k ≥ 1 for any k, so 
rA/sin2A + rB/sin2B + rC/sin2C ≥ 3. 

A necessary condition for equality is that sin2(B + A/2) = sin2(B + A/2) = sin2(B + A/2) = 1 and hence 
A = B = C. But it is easily checked that this is also sufficient. 

A4.  P1 and P3 are fixed points. P2 lies on the line perpendicular to P1P3 through P3. The sequence P4, 
P5, P6, ... is defined inductively as follows: Pn+1 is the foot of the perpendicular from Pn to Pn-1Pn-2. 
Show that the sequence converges to a point P (whose position depends on P2). What is the locus of P 
as P2 varies? 

Solution

PnPn+1Pn+2 lies inside Pn-1PnPn+1. So we have sequence of nested triangles whose size shrinks to zero. 
Each triangle is a closed set, so there is just one point P in the intersection of all the triangles and it is 
clear that the sequence Pn converges to it. 

Obviously all the triangles PnPn+1Pn+2 are similar (but not necessarily with the vertices in that order). 
So P must lie in the same position relative to each triangle and we must be able to obtain one triangle 
from another by rotation and expansion about P. In particular, P5P4P6 is similar (with the vertices in 
that order) to P1P2P3, and P4P5 is parallel to P1P2, so the rotation to get one from the other must be 
through π and P must lie on P1P5. Similarly P3P4P5 must be obtained from P1P2P3 by rotation about P 
through π/2 and expansion. But this takes P1P5 into a perpendicular line through P3. Hence P1P is 
perpendicular to P3P. Hence P lies on the circle diameter P1P3. 

However, not all points on this circle are points of the locus. P3P5 = P3P4 cos P1 = P3P1 sin P1 cos P2 = 
1/2 P3P1 sin 2P1, so we can obtain all values of P3P5 up to P1P3/2. [Of course, P2, and hence P5, can be 
on either side of P3.]. Thus the locus is an arc XP3Y of the circle with XP3 = YP3 and ∠XP1Y = 2 tan-

11/2. If O is the midpoint of P1P3, then O is the center of the circle and ∠XOY = 4 tan-11/2 (about 
106o). 

A5.  n people are seated in a circle. A total of nk coins are distributed amongst the people, but not 
necessarily equally. A move is the transfer of a single coin between two adjacent people. Find an 
algorithm for making the minimum number of moves which result in everyone ending up with the 
same number of coins? 

Solution



Label the people from 1 to n, with person i next to person i+1, and person n next to person 1. Let 
person i initially hold ci coins. Let di = ci - k. 

It is not obvious how many moves are needed. Clearly at least 1/2 ∑ |di| are needed. But one may 
need more. For example, suppose the starting values of di are 0, 1, 0, -1, 0. Then one needs at least 2 
moves, not 1. 

Obviously ∑ di = 0, so not all di can be negative. Relabel if necessary so that d1 ≥= 0. Now consider X 
= |d1| + |d1 + d2| + |d1 + d2 + d3| + ... + |d1 + d2 + ... + dn-1|. Note first that X is zero iff all di are zero. 
Any move between i and i+1, except one between n and 1, changes X by 1, because only the term |d1

+ d2 + ... + di| is affected. Thus if we do not make any moves between n and 1, then we need at least X 
moves to reach the desired final position (with all di zero). 

Assume X > 1. We show how to find a move which reduces X by 1. This requires a little care to avoid 
specifying a move which might require a person with no coins to transfer one. We are assuming that 
d1 ≥ 0. Take the first i for which di+1 < 0. There must be such an i, otherwise all di would be non-
negative, but they sum to 0, so they would all have to be zero, contradicting X > 0. If d1 + ... + di > 0, 
then we take the move to be a transfer from i to i+1. This will reduce |d1 + ... + di| by 1 and leave the 
other terms in X unchanged, so it will reduce X by 1. If d1 + ... + di is not strictly positive, then by the 
minimality of i we must have d1 = d2 = ... = di = 0. We know that di+1 < 0. Now find the first j > i+1 
such that dj ≥ 0. There must be such a j, otherwise we would have ∑ dm < 0. We have d1 + ... + dj-1 < 
0, so a transfer from j to j-1 will reduce |d1 + ... + dj-1| and hence reduce X. Finally note that the move 
we have chosen leaves d1 ≥ 0. Thus we can repeat the process and reduce X to zero in X moves. 

We have proved that this procedure minimises the number of moves if we accept the restriction that 
we do not make any transfers between 1 and n. Thus the full algorithm is: calculate the effect of the 
transfers from 1 to n and from n to 1 on X. If either of these transfers reduces X by more than 1, then 
take the move with the larger reduction; otherwise, find a move as above which reduces X by 1; 
repeat.

10th APMO 1998

A1.  S is the set of all possible n-tuples (X1, X2, ... , Xn) where each Xi is a subset of {1, 2, ... , 1998}. 
For each member k of S let f(k) be the number of elements in the union of its n elements. Find the 
sum of f(k) over all k in S. 

Solution

Answer: 1998(21998n - 21997n). 

Let s(n, m) be the sum where each Xi is a subset of {1, 2, ... , m}. There are 2m possible Xi and hence 
2mn possible n-tuples. We have s(n, m) = 2ns(n, m-1) + (2n - 1)2n(m-1) (*). For given any n-tuple {X1, ... 
, Xn} of subsets of {1, 2, ... , m-1} we can choose to add m or not (2 choices) to each Xi. So we derive 
2n n-tuples of subsets of {1, 2, ... , m}. All but 1 of these have f(k) incremented by 1. The first term in 
(*) gives the sum for m-1 over the increased number of terms and the second term gives the 



increments to the f(k) due to the additional element. 

Evidently s(n, 1) = 2n - 1. It is now an easy induction to show that s(n, m) = m(2nm - 2n(m-1)). 

Putting m = 1998 we get that the required sum is 1998(21998n - 21997n). 

A2.  Show that (36m + n)(m + 36n) is not a power of 2 for any positive integers m, n. 

Solution

Assume there is a solution. Take m ≤ n and the smallest possible m. Now (36m + n) and (m + 36n) 
must each be powers of 2. Hence 4 divides n and 4 divides m. So m/2 and n/2 is a smaller solution 
with m/2 < m. Contradiction

A3.  Prove that (1 + x/y)(1 + y/z)(1 + z/x) ≥ 2 + 2(x + y + z)/w for all positive reals x, y, z, where w is 
the cube root of xyz. 

Solution

(1 + x/y)(1 + y/z)(1 + z/x) = 1 + x/y + y/x + y/z + z/y + z/x + x/z = (x + y + z)(1/x + 1/y + 1/z) - 1 ≥ 
3(x + y + z)/w - 1, by the arithmetic geometric mean inequality, 
= 2(x + y + z)/w + (x + y + z)/w - 1 ≥ 2(x + y + z) + 3 - 1, by the arithmetic geometric mean 
inequality

A4.  ABC is a triangle. AD is an altitude. X lies on the circle ABD and Y lies on the circle ACD. X, D 
and Y are collinear. M is the midpoint of XY and M' is the midpoint of BC. Prove that MM' is 
perpendicular to AM. 

Solution

Take P, Q so that PADB, AQCD are rectangles. Let N be the midpoint of PQ. Then PD is a diameter 
of the circumcircle of ABC, so PX is perpendicular to XY. Similarly, QY is perpendicular to XY. N is 
the midpoint of PQ and M' the midpoint of XY, so NM is parallel to PX and hence perpendicular to 
XY. NADM' is a rectangle, so ND is a diameter of its circumcircle and M must lie on the 
circumcircle. But AM' is also a diameter, so ∠AMM' = 90o. 

Thanks to Michael Lipnowski for the above. My original solution is below.

Let P be the circumcenter of ABD and Q the circumcenter of ADC. Let R be the midpoint of AM'. P 
and Q both lie on the perpendicular bisector of AD, which is parallel to BC and hence also passes 
through R. We show first that R is the midpoint of PQ. 

Let the feet of the perpendiculars from P, Q, R to BC to P', Q', R' respectively. It is sufficient to show 
that . BP' = BD/2. BR' = BM' + M'R' = (BD + DC)/2 + M'D/2 = (BD + DC)/2 + ( (BD + DC)/2 -
DC)/2 = 3BD/4 + DC/4, so P'R' = (BD + DC)/4. Q'C = DC/2, so BQ' = BD + DC/2 and P'Q' = (BD + 



DC)/2 = 2P'R'. 

Now the circumcircle centre P meets XY in X and D, and the circumcircle centre Q meets XY in D 
and Y. Without loss of generality we may take XD >= DY. Put XD = 4x, DY = 4y. The circle center 
R through A, M' and D meets XY in a second point, say M''. Let the feet of the perpendiculars from P, 
Q, R to XY be P'', Q'', R'' respectively. So on XY we have, in order, X, P'', M'', R'', D, Q'', Y. Since R 
is the midpoint of PQ, R'' is the midpoint of P''Q''. Now P'' is the midpoint of XD and Q'' is the 
midpoint of DY, so P''Q'' = XY/2 = 2(x+y), so R''Q'' = x+y. But DQ'' = 2y, so R''D = x-y. R'' is the 
midpoint of M''D, so M''D = 2(x-y) and hence M''Y = M''D + DY = 2(x-y) + 4y = 2(x+y) = XY/2. So 
M'' is just M the midpoint of XY. Now AM' is a diameter of the circle center R, so AM is 
perpendicular to MM'. 

A5.  What is the largest integer divisible by all positive integers less than its cube root. 

Solution

Answer: 420. 

Let N be a positive integer satisfying the condition and let n be the largest integer not exceeding its 
cube root. If n = 7, then 3·4·5·7 = 420 must divide N. But N cannot exceed 83 - 1 = 511, so the largest 
such N is 420. 

If n ≥ 8, then 3·8·5·7 = 840 divides N, so N > 729 = 93. Hence 9 divides N, and hence 3·840 = 2520 
divides N. But we show that no N > 2000 can satisfy the condition. 

Note that 2(x - 1)3 > x3 for any x > 4. Hence [x]3 > x3/2 for x > 4. So certainly if N > 2000, we have n3

> N/2. Now let pk be the highest power of k which does not exceed n. Then pk > n/k. Hence p2p3p5 > 
n3/30 > N/60. But since N > 2000, we have 7 < 11 < n and hence p2, p3, p5, 7, 11 are all ≤ n. But 77 
p2p3p5 > N, so N cannot satisfy the condition. 

11th APMO 1999

A1.  Find the smallest positive integer n such that no arithmetic progression of 1999 reals contains 
just n integers. 

Solution

Answer: 70. 

Using a difference of 1/n , where n does not divide 1999, we can get a progression of 1999 terms with 
m = [1998/n] or m = [1998/n] - 1 integers. Thus {0, 1/n, 2/n, ... , 1998/n} has m+1 integers, and {1/n, 
2/n, ... , 1999/n} has m integers. So we are ok until n gets so large that the gap between [1998/n] and 
[1998/(n+1)] is 3 or more. This could happen for 1998/n - 1998/(n+1) just over 2 or n > 31. So 
checking, we find [1998/31] = 64, [1998/30] = 66, [1998/29] = 68, [1998/28] = 71. 

We can get 68 integers with {1/29, 2/29, ... , 1999/29} and 69 with {0, 1/29, 2/29, ... , 1998/29}. We 



can get 71 with {1/28, 2/28, ... , 1999/28}, but we cannot get 70. Note that a progression with 
irrational difference gives at most 1 integer. A progression with difference a/b, where a and b are 
coprime integers, gives the same number of integers as a progression with difference 1/b. So it does 
not help to widen the class of progressions we are looking at.

A2.  The real numbers x1, x2, x3, ... satisfy xi+j ≤ xi + xj for all i, j. Prove that x1 + x2/2 + ... + xn/n ≥ xn.

Solution

We use induction. Suppose the result is true for n. We have: 
x1 >= x1

x1 + x2/2 >= x2

... 
x1 + x2/2 + ... + xn/n >= xn

Also: x1 + 2x2/2 + ... + nxn/n = x1 + ... + xn

Adding: (n+1) x1 + (n+1)x2/2 + ... + (n+1)xn/n >= 2(x1 + ... + xn). But rhs = (x1 + xn) + (x2 + xn-1) + ... 
+ (xn + x1) >= n xn+1. Hence result. 

A3.  Two circles touch the line AB at A and B and intersect each other at X and Y with X nearer to 
the line AB. The tangent to the circle AXY at X meets the circle BXY at W. The ray AX meets BW at 
Z. Show that BW and BX are tangents to the circle XYZ. 

Solution

Let angle ZXW =  and angle ZWX = . XW is tangent to circle AXY at X, so angle AYX = . AB 
is tangent to circle AXY at A, so angle BAX = . AB is tangent to circle BXY at B, so angle ABX = 
. Thus, considering triangle ABX, angle BXZ = . Considering triangle ZXW, angle BZX = . 

BXYW is cyclic, so angle BYX = angle BWX = . Hence angle AYB = angle AYX + angle XYB = 
 = angle AZB. So AYZB is cyclic. Hence angle BYZ = angle BAZ = . So angle XYZ = angle 
XYB + angle BYZ = . Hence angle BZX = angle XYZ, so BZ is tangent to circle XYZ at Z. 
Similarly angle BXY = angle XYZ, so BX is tangent to circle XYZ at X. 

A4.  Find all pairs of integers m, n such that m2 + 4n and n2 + 4m are both squares. 

Solution

Answer: (m, n) or (n, m) = (0, a2), (-5, -6), (-4, -4), (a+1, -a) where a is a non-negative integer. 

Clearly if one of m, n is zero, then the other must be a square and that is a solution. 

If both are positive, then m2 + 4n must be (m + 2k)2 for some positive k, so n = km + k2 > m. But 
similarly m > n. Contradiction. So there are no solutions with m and n positive. 

Suppose both are negative. Put m = -M, n = -N, so M and N are both positive. Assume M >= N. M2 -



4N is a square, so it must be (M - 2k)2 for some k, so N = Mk - k2. If M = N, then M(k-1) = k2, so k-1 
divides k2 and hence k2 - (k-1)(k+1) = 1, so k = 2 and M = 4, giving the solution (m, n) = (-4, -4). So 
we may assume M > N and hence M > Mk - k2 > 0. But that implies that k = 1 or M-1 and hence N = 
M-1. [If M > Mk - k2, then (k-1)M < k2. Hence k = 1 or M < k+2. But Mk - k2 > 0, so M > k. Hence k 
= 1 or M = k+1.]. 

But N2 - 4M is also a square, so (M-1)2 - 4M = M2 - 6M + 1 is a square. But (M-3)2 > M2 - 6M + 1 
and (M-4)2 < M2 - 6M + 1 for M >= 8, so the only possible solutions are M = 1, 2, ... , 7. Checking, 
we find that only M = 6 gives M2 - 6M + 1 a square. This gives the soluton (m, n) = (-6, -5). 
Obviously, there is also the solution (-5, -6). 

Finally, consider the case of opposite signs. Suppose m = M > 0, n = -N < 0. Then N2 + 4M is a 
square, so by the argument above M > N. But M2 - 4N is a square and so the argument above gives N 
= M-1. Now we can easily check that (m, n) = (M, -(M-1) ) is a solution for any positive M. 

A5. A set of 2n+1 points in the plane has no three collinear and no four concyclic. A circle is said to 
divide the set if it passes through 3 of the points and has exactly n - 1 points inside it. Show that the 
number of circles which divide the set is even iff n is even. 

Solution

Take two of the points, A and B, and consider the 2n-1 circles through A and B. We will show that 
the number of these circles which divide the set is odd. The result then follows almost immediately, 
because the number of pairs A, B is (2n+1)2n/2 = N, say. The total number of circles which divide the 
set is a sum of N odd numbers divided by 3 (because each such circle will be counted three times). If 
n is even, then N is even, so a sum of N odd numbers is even. If n is odd, then N is odd, so a sum of N 
odd numbers is odd. Dividing by 3 does not change the parity.

Their centers all lie on the perpendicular bisector of AB. Label them C1, C2, ... , C2n-1, where the 
center of Ci lies to the left of Cj on the bisector iff i < j. We call the two half-planes created by AB the 
left-hand half-plane L and the right-hand half-plane R correspondingly. Let the third point of the set 
on Ci be Xi. Suppose i < j. Then Ci contains all points of Cj that lie in L and Cj contains all points of Ci

that lie R. So Xi lies inside Cj iff Xi lies in R and Xj lies inside Ci iff Xj lies in L

Now plot f(i), the number of points in the set that lie inside Ci, as a function of i. If Xi and Xi+1 are on 
opposite sides of AB, then f(i+1) = f(i). If they are both in L, then f(i+1) = f(i) - 1, and if they are both 
in R, then f(i+1) = f(i) + 1. Suppose m of the Xi lie in L and 2n-1-m lie in R. Now suppose f(i) = n-2, 
f(i+1) = f(i+2) = ... = f(i+j) = n-1, f(i+j+1) = n. Then j must be odd. For Xi and Xi+1 must lie in R. 
Then the points must alternate, so Xi+2 lies in L, Xi+3 lies in R etc. But Xi+j and Xi+j+1 must lie in R. 
Hence j must be odd. On the other hand, if f(i+j+1) = n-2, then j must be even. So the parity of the 
number of C1, C2, ... , Ci which divide the set only changes when f crosses the line n-1 from one side 
to the other. We now want to say that f starts on one side of the line n-1 and ends on the other, so the 
final parity must be odd. Suppose there are m points in L and hence 2n-1-m in R. Without loss of 
generality we may take m <= n-1. The first circle C1 contains all the points in L except X1 if it is in L. 
So f(1) = m or m-1. Similarly the last circle C2n-1 contains all the points in R except X2n-1 if it is in R. 
So f(2n-1) = 2n-1-m or 2n-2-m. Hence if m < n-1, then f(1) = m or m-1, so f(1) < n-1. But 2n-1-m >= 



n+1, so f(2n-1) > n-1. So in this case we are done. 

However, there are complications if m = n-1. We have to consider 4 cases. Case (1): m = n-1, X1 lies 
in R, X2n-1 lies in L. Hence f(1) = n-1, f(2n-1) = n > n-1. So f starts on the line n-1. If it first leaves it 
downwards, then for the previous point i, Xi is in L and hence there were an even number of points up 
to i on the line. So the parity is the same as if f(1) was below the line. f(2n-1) is above the line, so we 
get an odd number of points on the line. If f first leaves the line upwards, then for the previous point i, 
Xi is in R and hence there were an odd number of points up to i on the line. So again the parity is the 
same as if f(1) was below the line. 

Case (2): m = n-1, X1 lies in R, X2n-1 lies in R. Hence f(1) = f(2n-1) = n-1. As in case (1) the parity is 
the same as if f(1) was below the line. If the last point j with f(j) not on the line has f(j) < n-1, then 
(since X2n-1 lies in R) there are an odd number of points above j, so the parity is the same as if f(2n-1) 
was above the line. Similarly if f(j) > n-1, then there are an even number of points above j, so again 
the parity is the same as if f(2n-1) was above the line. 

Case (3): m = n-1, X1 lies in L, X2n-1 lies in L. Hence f(1) = n-2, f(2n-1) = n. So case has already been 
covered. 

Case (4): m=n-1, X1 lies in L, Xn-1 lies in R. So f(1) = n-2, f(2n-1) = n-1. As in case (2), the parity is 
the same as if f(2n-1) was above the line. 

12th APMO 2000

A1.  Find a1
3/(1 - 3a1 + 3a1

2) + a2
3/(1 - 3a2 + 3a2

2) + ... + a101
3/(1 - 3a101 + 3a101

2), where an = n/101. 

Solution

Answer: 51. 

The nth term is an
3/(1 - 3an + 3an

2) = an
3/( (1 - an)

3 + an
3) = n3/( (101 - n)3 + n3). Hence the sum of the 

nth and (101-n)th terms is 1. Thus the sum from n = 1 to 100 is 50. The last term is 1, so the total sum 
is 51. 

A2.  Find all permutations a1, a2, ... , a9 of 1, 2, ... , 9 such that a1 + a2 + a3 + a4 = a4 + a5 + a6 + a7 = a7

+ a8 + a9 + a1 and a1
2 + a2

2 + a3
2 + a4

2 = a4
2 + a5

2 + a6
2 + a7

2 = a7
2 + a8

2 + a9
2 + a1

2. 

Solution

We may start by assuming that a1 < a4 < a7 and that a2 < a3, a5 < a6, a8 < a9. 

Note that 1 + ... + 9 = 45 and 12 + ... + 92 = 285. Adding the three square equations together we get 
(a1

2 + ... + a9
2) + a1

2 + a4
2 + a7

2 = 285 + a1
2 + a4

2 + a7
2. The total must be a multiple of 3. But 285 is a 



multiple of 3, so a1
2 + a4

2 + a7
2 must be a multiple of 3. Now 32, 62 and 92 are all congruent to 0 mod 3 

and the other squares are all congruent to 1 mod 3. Hence either a1, a4 and a7 are all multiples of 3, or 
none of them are. Since 45 is also a multiple of three a similar argument with the three linear 
equations shows that a1 + a4 + a7 is a multiple of 3. So if none of a1, a4, a7 are multiples of 3, then they 
are all congruent to 1 mod 3 or all congruent to 2 mod 3. Thus we have three cases: (1) a1 = 3, a4 = 6, 
a7 = 9, (2) a1 = 1, a4 = 4, a7 = 7, and (3) a1 = 2, a4 = 5, a7 = 8. 

In case (1), we have that each sum of squares equals 137. Hence a8
2 + a9

2 = 47. But 47 is not a sum of 
two squares, so this case gives no solutions. 

In case (2), we have that each sum of squares is 117. Hence a5
2 + a6

2 = 52. But the only way of 
writing 52 as a sum of two squares is 42 + 62 and 4 is already taken by a4, so this case gives no 
solutions. 

In case (3), we have that each sum of squares is 126 and each linear sum 20. We quickly find that the 
only solution is 2, 4, 9, 5, 1, 6, 8, 3, 7. 

Obviously, this generates a large number of equivalent solutions. We can interchange a2 and a3, or a5

and a6, or a8 and a9. We can also permute a1, a4 and a7. So we get a total of 2 x 2 x 2 x 6 =48 solutions. 

A3.  ABC is a triangle. The angle bisector at A meets the side BC at X. The perpendicular to AX at X 
meets AB at Y. The perpendicular to AB at Y meets the ray AX at R. XY meets the median from A at 
S. Prove that RS is perpendicular to BC. 

Solution

Let the line through C parallel to AX meet the ray BA at C'. Let the perpendicular from B meet the 
ray C'C at T and the ray AX at U. Let the line from C parallel to BT meet BA at V and let the 
perpendicular from V meet BT at W. So CVWT is a rectangle. 

AU bisects ∠CAV and CV is perpendicular to AU, so U is the midpoint of WT. Hence the 
intersection N of AU and CW is the center of the rectangle and, in particular, the midpoint of CW. Let 
M be the midpoint of BC. Then since M, N are the midpoints of the sides CB and CW of the triangle 
CBW, MN = BW/2. 

Since CC' is parallel to AX, ∠CC'A = ∠BAX = ∠CAX = ∠C'CA, so AC' = AC. Let A' be the 
midpoint of CC'. Then AU = C'T - C'A'. But N is the center of the rectangle CTWV, so NU = CT/2 
and AN = AU - NU = C'T - C'A' - CT/2 = C'T/2. Hence MN/AN = BW/C'T. But MN is parallel to 
BW and XY, so SX/AX = MN/AN = BW/C'T. 

Now AX is parallel to VW and XY is parallel to BW, so AXY and VWB are similar and AX/XY = 
VW/BW = CT/BW. Hence SX/XY = (SX/AX) (AX/XY) = CT/C'T. 

YX is an altitude of the right-angled triangle AXR, so AXY and YXR are similar. Hence XY/XR = 
XA/XY. But AXY and C'TB are similar, so XA/XY = C'T/BT. Hence SX/XR = (SX/XY) (XY/XR) = 
(CT/C'T) (C'T/BT) = CT/BT. But angles CTB and SXR are both right angles, so SXR and CTB are 
similar. But XR is perpendicular to BT, so SR is perpendicular to BC. 



A4.  If m < n are positive integers prove that nn/(mm (n-m)n-m) > n!/( m! (n-m)! ) > nn/( mm(n+1) (n-
m)n-m). 

Solution

The key is to consider the binomial expansion (m + n-m)n. This is a sum of positive terms, one of 
which is nCm mm(n-m)n-m, where nCm is the binomial coefficient n!/( m! (n-m)! ). Hence nCm mm(n-
m)n-m < nn, which is one of the required inequalities. 

We will show that nCm mm(n-m)n-m is the largest term in the binomial expansion. It then follows that 
(n+1) nCm mm(n-m)n-m > nn, which is the other required inequality. 

Comparing the rth term nCr mr(n-m)n-r with the r+1th term nCr+1 mr+1(n-m)n-r-1 we see that the rth 
term is strictly larger for r ≥ m and smaller for r < m. Hence the mth term is larger than the succeeding 
terms and also larger than the preceding terms. 

A5.  Given a permutation s0, s2, ... , sn of 0, 1, 2, .... , n, we may transform it if we can find i, j such 
that si = 0 and sj = si-1 + 1. The new permutation is obtained by transposing si and sj. For which n can 
we obtain (1, 2, ... , n, 0) by repeated transformations starting with (1, n, n-1, .. , 3, 2, 0)? 

Solution

Experimentation shows that we can do it for n=1 (already there), n = 2 (already there), 3, 7, 15, but 
not for n = 4, 5, 6, 8, 9, 10, 11, 12, 13, 14. So we conjecture that it is possible just for n = 2m - 1 and 
for n = 2. 

Notice that there is at most one transformation possible. If n = 2m, then we find that after m-1 
transformations we reach 

1  n  0  n-2  n-1  n-4  n-3 ... 4  5  2  3
and we can go no further. So n even fails for n > 2. 

If n = 15 we get successively: 

 1  15  14  13  12  11  10   9   8   7   6   5   4   3   2   0   start
 1   0  14  15  12  13  10  11   8   9   6   7   4   5   2   3   after 7 moves
 1   2   3   0  12  13  14  15   8   9  10  11   4   5   6   7   after 8 more 
moves
 1   2   3   4   5   6   7   0   8   9  10  11  12  13  14  15   after 8 more 
moves
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15   0   after 8 more 
moves
This pattern is general. Suppose n = 2m - 1. Let P0 be the starting position and Pr be the position: 
1   2   3 ... R-1   0,   n-R+1  n-R+2  n-R+3 ... n,   n-2R+1  n-2R+2 ... n-R, ... 
, R  R+1 ... 2R-1 
Here R denotes 2r and the commas highlight that, after the initial 1 2 ... R-1 0, we have increasing 
runs of R terms. If we start from Pr, then the 0 is transposed successively with R, 3R, 5R, ... , n-R+1, 
then with R+1, 3R+1, ... , n-R+2, and so on up to 2R-1, 4R-1, ... , n. But that gives Pr+1. It is also easy 
to check that P0 leads to P1 and that Pm is the required finishing position. Thus the case n = 2m - 1 



works. 

Now suppose n is odd but not of the form 2m - 1. Then we can write n = (2a + 1)2b - 1 (just take 2b as 
the highest power of 2 dividing n + 1). We can now define P0, P1, ... , Pb as before. As before we will 
reach Pb: 

1 2 ¼ B-1 0, 2aB 2aB+1¼ (2a+1)B-1, (2a-1)B ¼ 2aB-1, ¼ , 3B, 3B+1, ¼ 4B-1, 2B, 
2B+1, ¼ , 3B-1, B, B+1, ¼ , 2B-1 
where B = 2b - 1. But then the 0 is transposed successively with B, 3B, 5B, ... , (2a-1)B, which puts it 
immediately to the right of (2a+1)B-1 = n, so no further transformations are possible and n = (2a+1)2b

- 1 fails



XIII Asian Pacific Mathematics Olympiad
March, 2001

Time allowed: 4 hours

No calculators to be used

Each question is worth 7 points

Problem 1.

For a positive integer n let S(n) be the sum of digits in the decimal representation of n. Any positive
integer obtained by removing several (at least one) digits from the right-hand end of the decimal
representation of n is called a stump of n. Let T (n) be the sum of all stumps of n. Prove that
n = S(n) + 9T (n).

Problem 2.
Find the largest positive integer N so that the number of integers in the set {1, 2, . . . , N} which are
divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).

Problem 3.
Let two equal regular n-gons S and T be located in the plane such that their intersection is a 2n-gon
(n ≥ 3). The sides of the polygon S are coloured in red and the sides of T in blue.

Prove that the sum of the lengths of the blue sides of the polygon S ∩ T is equal to the sum of the
lengths of its red sides.

Problem 4.
A point in the plane with a cartesian coordinate system is called a mixed point if one of its coordinates
is rational and the other one is irrational. Find all polynomials with real coefficients such that their
graphs do not contain any mixed point.

Problem 5.
Find the greatest integer n, such that there are n+4 points A, B, C, D, X1, . . . , Xn in the plane with
AB 6= CD that satisfy the following condition: for each i = 1, 2, . . . , n triangles ABXi and CDXi are
equal.



XIV Asian Pacific Mathematics Olympiad
March 2002

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.
Let a1, a2, a3, . . . , an be a sequence of non-negative integers, where n is a positive integer. Let

An =
a1 + a2 + · · ·+ an

n
.

Prove that
a1!a2! . . . an! ≥ (bAnc!)n

,

where bAnc is the greatest integer less than or equal to An, and a! = 1 × 2 × · · · × a for a ≥ 1 (and 0! = 1).
When does equality hold?

Problem 2.
Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

Problem 3.
Let ABC be an equilateral triangle. Let P be a point on the side AC and Q be a point on the side AB so that
both triangles ABP and ACQ are acute. Let R be the orthocentre of triangle ABP and S be the orthocentre
of triangle ACQ. Let T be the point common to the segments BP and CQ. Find all possible values of 6 CBP
and 6 BCQ such that triangle TRS is equilateral.

Problem 4.
Let x, y, z be positive numbers such that

1
x

+
1
y

+
1
z

= 1.

Show that √
x + yz +

√
y + zx +

√
z + xy ≥ √

xyz +
√

x +
√

y +
√

z.

Problem 5.
Let R denote the set of all real numbers. Find all functions f from R to R satisfying:

(i) there are only finitely many s in R such that f(s) = 0, and
(ii) f(x4 + y) = x3f(x) + f(f(y)) for all x, y in R.



XV Asian Pacific Mathematics Olympiad
March 2003

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.
Let a, b, c, d, e, f be real numbers such that the polynomial

p(x) = x8 − 4x7 + 7x6 + ax5 + bx4 + cx3 + dx2 + ex + f

factorises into eight linear factors x− xi, with xi > 0 for i = 1, 2, . . . , 8. Determine all possible values of f .

Problem 2.
Suppose ABCD is a square piece of cardboard with side length a. On a plane are two parallel lines `1 and `2,
which are also a units apart. The square ABCD is placed on the plane so that sides AB and AD intersect `1
at E and F respectively. Also, sides CB and CD intersect `2 at G and H respectively. Let the perimeters of
4AEF and 4CGH be m1 and m2 respectively. Prove that no matter how the square was placed, m1 + m2

remains constant.

Problem 3.
Let k ≥ 14 be an integer, and let pk be the largest prime number which is strictly less than k. You may assume
that pk ≥ 3k/4. Let n be a composite integer. Prove:
(a) if n = 2pk, then n does not divide (n− k)! ;
(b) if n > 2pk, then n divides (n− k)! .

Problem 4.
Let a, b, c be the sides of a triangle, with a + b + c = 1, and let n ≥ 2 be an integer. Show that

n
√

an + bn + n
√

bn + cn + n
√

cn + an < 1 +
n
√

2
2

.

Problem 5.
Given two positive integers m and n, find the smallest positive integer k such that among any k people, either
there are 2m of them who form m pairs of mutually acquainted people or there are 2n of them forming n pairs
of mutually unacquainted people.



XVI Asian Pacific Mathematics Olympiad
March 2004

Time allowed: 4 hours
No calculators are to be used
Each question is worth 7 points

Problem 1.
Determine all finite nonempty sets S of positive integers satisfying

i + j

(i, j)
is an element of S for all i, j in S,

where (i, j) is the greatest common divisor of i and j.

Problem 2.
Let O be the circumcentre and H the orthocentre of an acute triangle ABC. Prove that the area of one of the
triangles AOH, BOH and COH is equal to the sum of the areas of the other two.

Problem 3.
Let a set S of 2004 points in the plane be given, no three of which are collinear. Let L denote the set of all lines
(extended indefinitely in both directions) determined by pairs of points from the set. Show that it is possible
to colour the points of S with at most two colours, such that for any points p, q of S, the number of lines in L
which separate p from q is odd if and only if p and q have the same colour.
Note: A line ` separates two points p and q if p and q lie on opposite sides of ` with neither point on `.

Problem 4.
For a real number x, let bxc stand for the largest integer that is less than or equal to x. Prove that

⌊
(n− 1)!
n(n + 1)

⌋

is even for every positive integer n.

Problem 5.
Prove that

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca)

for all real numbers a, b, c > 0.



XVII Asian Pacific Mathematics Olympiad

Time allowed : 4 hours
Each problem is worth 7 points

∗ The contest problems are to be kept confidential until they are posted on the official APMO
website. Please do not disclose nor discuss the problems over the internet until that date.
No calculators are to be used during the contest.

Problem 1. Prove that for every irrational real number a, there are irrational real numbers
b and b′ so that a + b and ab′ are both rational while ab and a + b′ are both irrational.

Problem 2. Let a, b and c be positive real numbers such that abc = 8. Prove that

a2

√
(1 + a3)(1 + b3)

+
b2

√
(1 + b3)(1 + c3)

+
c2

√
(1 + c3)(1 + a3)

≥ 4

3
.

Problem 3. Prove that there exists a triangle which can be cut into 2005 congruent
triangles.

Problem 4. In a small town, there are n×n houses indexed by (i, j) for 1 ≤ i, j ≤ n with
(1, 1) being the house at the top left corner, where i and j are the row and column indices,
respectively. At time 0, a fire breaks out at the house indexed by (1, c), where c ≤ n

2 .
During each subsequent time interval [t, t+1], the fire fighters defend a house which is not
yet on fire while the fire spreads to all undefended neighbors of each house which was on
fire at time t. Once a house is defended, it remains so all the time. The process ends when
the fire can no longer spread. At most how many houses can be saved by the fire fighters?
A house indexed by (i, j) is a neighbor of a house indexed by (k, `) if |i− k|+ |j − `| = 1.

Problem 5. In a triangle ABC, points M and N are on sides AB and AC, respectively,
such that MB = BC = CN . Let R and r denote the circumradius and the inradius of the
triangle ABC, respectively. Express the ratio MN/BC in terms of R and r.



XVII APMO - March, 2005

Problems and Solutions

Problem 1. Prove that for every irrational real number a, there are irrational real numbers
b and b′ so that a + b and ab′ are both rational while ab and a + b′ are both irrational.

(Solution) Let a be an irrational number. If a2 is irrational, we let b = −a. Then,
a + b = 0 is rational and ab = −a2 is irrational. If a2 is rational, we let b = a2 − a. Then,
a + b = a2 is rational and ab = a2(a− 1). Since

a =
ab

a2
+ 1

is irrational, so is ab.

Now, we let b′ =
1

a
or b′ =

2

a
. Then ab′ = 1 or 2, which is rational. Note that

a + b′ =
a2 + 1

a
or a + b′ =

a2 + 2

a
.

Since,
a2 + 2

a
− a2 + 1

a
=

1

a
,

at least one of them is irrational.

1



Problem 2. Let a, b and c be positive real numbers such that abc = 8. Prove that

a2

√
(1 + a3)(1 + b3)

+
b2

√
(1 + b3)(1 + c3)

+
c2

√
(1 + c3)(1 + a3)

≥ 4

3
.

(Solution) Observe that
1√

1 + x3
≥ 2

2 + x2
. (1)

In fact, this is equivalent to (2 + x2)2 ≥ 4(1 + x3), or x2(x− 2)2 ≥ 0. Notice that equality
holds in (1) if and only if x = 2.

We substitute x by a, b, c in (1), respectively, to find

a2

√
(1 + a3)(1 + b3)

+
b2

√
(1 + b3)(1 + c3)

+
c2

√
(1 + c3)(1 + a3)

≥ 4a2

(2 + a2)(2 + b2)
+

4b2

(2 + b2)(2 + c2)
+

4c2

(2 + c2)(2 + a2)
. (2)

We combine the terms on the right hand side of (2) to obtain

Left hand side of (2) ≥ 2S(a, b, c)

36 + S(a, b, c)
=

2

1 + 36/S(a, b, c)
, (3)

where S(a, b, c) := 2(a2 + b2 + c2) + (ab)2 + (bc)2 + (ca)2. By AM-GM inequality, we have

a2 + b2 + c2 ≥ 3 3
√

(abc)2 = 12 ,

(ab)2 + (bc)2 + (ca)2 ≥ 3 3
√

(abc)4 = 48 .

Note that the equalities holds if and only if a = b = c = 2. The above inequalities yield

S(a, b, c) = 2(a2 + b2 + c2) + (ab)2 + (bc)2 + (ca)2 ≥ 72 . (4)

Therefore
2

1 + 36/S(a, b, c)
≥ 2

1 + 36/72
=

4

3
, (5)

which is the required inequality.

2



Problem 3. Prove that there exists a triangle which can be cut into 2005 congruent
triangles.

(Solution) Suppose that one side of a triangle has length n. Then it can be cut into n2

congruent triangles which are similar to the original one and whose corresponding sides to
the side of length n have lengths 1.

Since 2005 = 5 × 401 where 5 and 401 are primes and both primes are of the type
4k + 1, it is representable as a sum of two integer squares. Indeed, it is easy to see that

2005 = 5× 401 = (22 + 1)(202 + 1)
= 402 + 202 + 22 + 1
= (40− 1)2 + 2× 40 + 202 + 22

= 392 + 222.

Let ABC be a right-angled triangle with the legs AB and BC having lengths 39 and
22, respectively. We draw the altitude BK, which divides ABC into two similar triangles.
Now we divide ABK into 392 congruent triangles as described above and BCK into 222

congruent triangles. Since ABK is similar to BKC, all 2005 triangles will be congruent.

3



Problem 4. In a small town, there are n×n houses indexed by (i, j) for 1 ≤ i, j ≤ n with
(1, 1) being the house at the top left corner, where i and j are the row and column indices,
respectively. At time 0, a fire breaks out at the house indexed by (1, c), where c ≤ n

2 .
During each subsequent time interval [t, t+1], the fire fighters defend a house which is not
yet on fire while the fire spreads to all undefended neighbors of each house which was on
fire at time t. Once a house is defended, it remains so all the time. The process ends when
the fire can no longer spread. At most how many houses can be saved by the fire fighters?
A house indexed by (i, j) is a neighbor of a house indexed by (k, `) if |i− k|+ |j − `| = 1.

(Solution) At most n2 + c2−nc− c houses can be saved. This can be achieved under the
following order of defending:

(2, c), (2, c + 1); (3, c− 1), (3, c + 2); (4, c− 2), (4, c + 3); . . .
(c + 1, 1), (c + 1, 2c); (c + 1, 2c + 1), . . . , (c + 1, n).

(6)

Under this strategy, there are

2 columns (column numbers c, c + 1) at which n− 1 houses are saved
2 columns (column numbers c− 1, c + 2) at which n− 2 houses are saved
· · ·
2 columns (column numbers 1, 2c) at which n− c houses are saved
n− 2c columns (column numbers n− 2c + 1, . . . , n) at which n− c houses are saved

Adding all these we obtain :

2[(n− 1) + (n− 2) + · · ·+ (n− c)] + (n− 2c)(n− c) = n2 + c2 − cn− c. (7)

We say that a house indexed by (i, j) is at level t if |i− 1|+ |j− c| = t. Let d(t) be the
number of houses at level t defended by time t, and p(t) be the number of houses at levels
greater than t defended by time t. It is clear that

p(t) +
t∑

i=1

d(i) ≤ t and p(t + 1) + d(t + 1) ≤ p(t) + 1.

Let s(t) be the number of houses at level t which are not burning at time t. We prove that

s(t) ≤ t− p(t) ≤ t

for 1 ≤ t ≤ n − 1 by induction. It is obvious when t = 1. Assume that it is true for
t = k. The union of the neighbors of any k − p(k) + 1 houses at level k + 1 contains at
least k − p(k) + 1 vertices at level k. Since s(k) ≤ k − p(k), one of these houses at level
k is burning. Therefore, at most k − p(k) houses at level k + 1 have no neighbor burning.
Hence we have

s(k + 1) ≤ k − p(k) + d(k + 1)
= (k + 1)− (p(k) + 1− d(k + 1))
≤ (k + 1)− p(k + 1).

4



We now prove that the strategy given above is optimal. Since

n−1∑
t=1

s(t) ≤
(

n

2

)
,

the maximum number of houses at levels less than or equal to n − 1, that can be saved

under any strategy is at most
(
n
2

)
, which is realized by the strategy above. Moreover, at

levels bigger than n− 1, every house is saved under the strategy above.

The following is an example when n = 11 and c = 4. The houses with © mark are
burned. The houses with

⊗
mark are blocked ones and hence those and the houses below

them are saved.

•⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⊙ ⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙

⊙ ⊗ ⊗ ⊙ ⊙ ⊙ ⊙

⊗ ⊗ ⊗ ⊗ ⊗

5



Problem 5. In a triangle ABC, points M and N are on sides AB and AC, respectively,
such that MB = BC = CN . Let R and r denote the circumradius and the inradius of the
triangle ABC, respectively. Express the ratio MN/BC in terms of R and r.

(Solution) Let ω, O and I be the circumcircle, the circumcenter and the incenter of ABC,
respectively. Let D be the point of intersection of the line BI and the circle ω such that
D 6= B. Then D is the midpoint of the arc AC. Hence OD ⊥ CN and OD = R.

We first show that triangles MNC and IOD are similar. Because BC = BM , the line
BI (the bisector of ∠MBC) is perpendicular to the line CM . Because OD ⊥ CN and
ID ⊥ MC, it follows that

∠ODI = ∠NCM (8)

Let ∠ABC = 2β. In the triangle BCM , we have

CM

NC
=

CM

BC
= 2 sin β (9)

Since ∠DIC = ∠DCI, we have ID = CD = AD. Let E be the point of intersection
of the line DO and the circle ω such that E 6= D. Then DE is a diameter of ω and
∠DEC = ∠DBC = β. Thus we have

DI

OD
=

CD

OD
=

2R sin β

R
= 2 sin β. (10)

Combining equations (8), (9), and (10) shows that triangles MNC and IOD are similar.
It follows that

MN

BC
=

MN

NC
=

IO

OD
=

IO

R
. (11)

The well-known Euler’s formula states that

OI2 = R2 − 2Rr. (12)

Therefore,

MN

BC
=

√
1− 2r

R
. (13)

(Alternative Solution) Let a (resp., b, c) be the length of BC (resp., AC, AB). Let α
(resp., β, γ) denote the angle ∠BAC (resp., ∠ABC, ∠ACB). By introducing coordinates
B = (0, 0), C = (a, 0), it is immediate that the coordinates of M and N are

M = (a cos β, a sin β), N = (a− a cos γ, a sin γ), (14)

6



respectively. Therefore,

(MN/BC)2 = [(a− a cos γ − a cos β)2 + (a sin γ − a sin β)2]/a2

= (1− cos γ − cos β)2 + (sin γ − sin β)2

= 3− 2 cos γ − 2 cos β + 2(cos γ cos β − sin γ sin β)
= 3− 2 cos γ − 2 cos β + 2 cos(γ + β)
= 3− 2 cos γ − 2 cos β − 2 cos α
= 3− 2(cos γ + cos β + cos α).

(15)

Now we claim
cos γ + cos β + cos α =

r

R
+ 1. (16)

From
a = b cos γ + c cos β
b = c cos α + a cos γ
c = a cos β + b cos α

(17)

we get

a(1 + cos α) + b(1 + cos β) + c(1 + cos γ) = (a + b + c)(cos α + cos β + cos γ). (18)

Thus

cos α + cos β + cos γ

=
1

a + b + c
(a(1 + cos α) + b(1 + cos β) + c(1 + cos γ))

=
1

a + b + c

(
a

(
1 +

b2 + c2 − a2

2bc

)
+ b

(
1 +

a2 + c2 − b2

2ac

)
+ c

(
1 +

a2 + b2 − c2

2ab

))

=
1

a + b + c

(
a + b + c +

a2(b2 + c2 − a2) + b2(a2 + c2 − b2) + c2(a2 + b2 − c2)

2abc

)

= 1 +
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

2abc(a + b + c)
.

(19)

On the other hand, from R =
a

2 sin α
it follows that

R2 =
a2

4(1− cos2 α)
=

a2

4

(
1−

(
b2 + c2 − a2

2bc

)2
)

=
a2b2c2

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4
.

(20)

7



Also from
1

2
(a + b + c)r =

1

2
bc sin α, it follows that

r2 =
b2c2(1− cos2 α)

(a + b + c)2
=

b2c2

(
1−

(
b2 + c2 − a2

2bc

)2
)

(a + b + c)2

=
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

4(a + b + c)2
.

(21)

Combining (19), (20) and (21), we get (16) as desired.

Finally, by (15) and (16) we have

MN

BC
=

√
1− 2r

R
. (22)

Another proof of (16) from R.A. Johnson’s “Advanced Euclidean Geometry”1 :

Construct the perpendicular bisectors OD, OE,OF , where D, E, F are the midpoints
of BC, CA, AB, respectively. By Ptolemy’s Theorem applied to the cyclic quadrilateral
OEAF , we get

a

2
·R =

b

2
·OF +

c

2
·OE.

Similarly
b

2
·R =

c

2
·OD +

a

2
·OF,

c

2
·R =

a

2
·OE +

b

2
·OD.

Adding, we get

sR = OD · b + c

2
+ OE · c + a

2
+ OF · a + b

2
, (23)

where s is the semiperimeter. But also, the area of triangle OBC is OD · a

2
, and adding

similar formulas for the areas of triangles OCA and OAB gives

rs = 4ABC = OD · a

2
+ OE · b

2
+ OF · c

2
(24)

Adding (23) and (24) gives s(R + r) = s(OD + OE + OF ), or

OD + OE + OF = R + r.

Since OD = R cos A etc., (16) follows.

1This proof was introduced to the coordinating country by Professor Bill Sands of Canada.
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Problem 1. Let n be a positive integer. Find the largest nonnegative real number f(n)
(depending on n) with the following property: whenever a1, a2, . . . , an are real numbers
such that a1 + a2 + · · ·+ an is an integer, there exists some i such that | ai − 1

2
| ≥ f(n).

Problem 2. Prove that every positive integer can be written as a finite sum of distinct
integral powers of the golden mean τ = 1+

√
5

2
. Here, an integral power of τ is of the form

τ i, where i is an integer (not necessarily positive).

Problem 3. Let p ≥ 5 be a prime and let r be the number of ways of placing p checkers
on a p× p checkerboard so that not all checkers are in the same row (but they may all be
in the same column). Show that r is divisible by p 5. Here, we assume that all the checkers
are identical.

Problem 4. Let A,B be two distinct points on a given circle O and let P be the midpoint
of the line segment AB. Let O1 be the circle tangent to the line AB at P and tangent to
the circle O. Let ` be the tangent line, different from the line AB, to O1 passing through
A. Let C be the intersection point, different from A, of ` and O. Let Q be the midpoint
of the line segment BC and O2 be the circle tangent to the line BC at Q and tangent to
the line segment AC. Prove that the circle O2 is tangent to the circle O.

Problem 5. In a circus, there are n clowns who dress and paint themselves up using a
selection of 12 distinct colours. Each clown is required to use at least five different colours.
One day, the ringmaster of the circus orders that no two clowns have exactly the same set
of colours and no more than 20 clowns may use any one particular colour. Find the largest
number n of clowns so as to make the ringmaster’s order possible.



Problem 1. Let n be a positive integer. Find the largest nonnegative real number f(n)
(depending on n) with the following property: whenever a1, a2, . . . , an are real numbers
such that a1 + a2 + · · ·+ an is an integer, there exists some i such that | ai − 1

2
| ≥ f(n).

(Solution) The answer is

f(n) =

{
0 if n is even,
1
2n

if n is odd.

First, assume that n is even. If ai = 1
2

for all i, then the sum a1 + a2 + · · · + an is an
integer. Since | ai − 1

2
|= 0 for all i, we may conclude f(n) = 0 for any even n.

Now assume that n is odd. Suppose that | ai − 1
2
|< 1

2n
for all 1 ≤ i ≤ n. Then, since∑n

i=1 ai is an integer,

1

2
≤

∣∣∣∣∣
n∑

i=1

ai − n

2

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣ai − 1

2

∣∣∣∣ <
1

2n
· n =

1

2
,

a contradiction. Thus |ai − 1
2
| ≥ 1

2n
for some i, as required. On the other hand, putting

n = 2m + 1 and ai = m
2m+1

for all i gives
∑

ai = m, while

∣∣∣∣ai − 1

2

∣∣∣∣ =
1

2
− m

2m + 1
=

1

2(2m + 1)
=

1

2n

for all i. Therefore, f(n) = 1
2n

is the best possible for any odd n.

Problem 2. Prove that every positive integer can be written as a finite sum of distinct
integral powers of the golden mean τ = 1+

√
5

2
. Here, an integral power of τ is of the form

τ i, where i is an integer (not necessarily positive).

(Solution) We will prove this statement by induction using the equality

τ 2 = τ + 1.

If n = 1, then 1 = τ 0. Suppose that n− 1 can be written as a finite sum of integral powers
of τ , say

n− 1 =
k∑

i=−k

aiτ
i, (1)

where ai ∈ {0, 1} and n ≥ 2. We will write (1) as

n− 1 = ak · · · a1a0.a−1a−2 · · · a−k. (2)

For example,
1 = 1.0 = 0.11 = 0.1011 = 0.101011.



Firstly, we will prove that we may assume that in (2) we have aiai+1 = 0 for all i with
−k ≤ i ≤ k − 1. Indeed, if we have several occurrences of 11, then we take the leftmost
such occurrence. Since we may assume that it is preceded by a 0, we can replace 011
with 100 using the identity τ i+1 + τ i = τ i+2. By doing so repeatedly, if necessary, we will
eliminate all occurrences of two 1’s standing together. Now we have the representation

n− 1 =
K∑

i=−K

biτ
i, (3)

where bi ∈ {0, 1} and bibi+1 = 0.
If b0 = 0 in (3), then we just add 1 = τ 0 to both sides of (3) and we are done.
Suppose now that there is 1 in the unit position of (3), that is b0 = 1. If there are two

0’s to the right of it, i.e.
n− 1 = · · · 1.00 · · · ,

then we can replace 1.00 with 0.11 because 1 = τ−1 + τ−2, and we are done because we
obtain 0 in the unit position. Thus we may assume that

n− 1 = · · · 1.010 · · · .

Again, if we have n− 1 = · · · 1.0100 · · · , we may rewrite it as

n− 1 = · · · 1.0100 · · · = · · · 1.0011 · · · = · · · 0.1111 · · ·
and obtain 0 in the unit position. Therefore, we may assume that

n− 1 = · · · 1.01010 · · · .

Since the number of 1’s is finite, eventually we will obtain an occurrence of 100 at the end,
i.e.

n− 1 = · · · 1.01010 · · · 100.

Then we can shift all 1’s to the right to obtain 0 in the unit position, i.e.

n− 1 = · · · 0.11 · · · 11,

and we are done.

Problem 3. Let p ≥ 5 be a prime and let r be the number of ways of placing p checkers
on a p× p checkerboard so that not all checkers are in the same row (but they may all be
in the same column). Show that r is divisible by p 5. Here, we assume that all the checkers
are identical.

(Solution) Note that r =

(
p 2

p

)
− p . Hence, it suffices to show that

(p 2 − 1)(p 2 − 2) · · · (p 2 − (p− 1))− (p− 1)! ≡ 0 (mod p 4). (1)



Now, let

f(x) := (x− 1)(x− 2) · · · (x− (p− 1)) = xp−1 + sp−2x
p−2 + · · ·+ s1x + s0. (2)

Then the congruence equation (1) is same as f(p 2)−s0 ≡ 0 (mod p 4). Therefore, it suffices
to show that s1p

2 ≡ 0 (mod p 4) or s1 ≡ 0 (mod p 2).
Since ap−1 ≡ 1 (mod p) for all 1 ≤ a ≤ p− 1, we can factor

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p). (3)

Comparing the coefficients of the left hand side of (3) with those of the right hand side
of (2), we obtain p | si for all 1 ≤ i ≤ p − 2 and s0 ≡ −1 (mod p). On the other hand,
plugging p for x in (2), we get

f(p) = (p− 1)! = s0 = p p−1 + sp−2p
p−2 + · · ·+ s1p + s0,

which implies
p p−1 + sp−2p

p−2 + · · ·+ s2p
2 = −s1p.

Since p ≥ 5, p | s2 and hence s1 ≡ 0 (mod p 2) as desired.

Problem 4. Let A,B be two distinct points on a given circle O and let P be the midpoint
of the line segment AB. Let O1 be the circle tangent to the line AB at P and tangent to
the circle O. Let ` be the tangent line, different from the line AB, to O1 passing through
A. Let C be the intersection point, different from A, of ` and O. Let Q be the midpoint
of the line segment BC and O2 be the circle tangent to the line BC at Q and tangent to
the line segment AC. Prove that the circle O2 is tangent to the circle O.

(Solution) Let S be the tangent point of the circles O and O1 and let T be the intersection
point, different from S, of the circle O and the line SP . Let X be the tangent point of
` to O1 and let M be the midpoint of the line segment XP . Since ∠TBP = ∠ASP , the
triangle TBP is similar to the triangle ASP . Therefore,

PT

PB
=

PA

PS
.

Since the line ` is tangent to the circle O1 at X, we have

∠SPX = 90◦ − ∠XSP = 90◦ − ∠APM = ∠PAM

which implies that the triangle PAM is similar to the triangle SPX. Consequently,

XS

XP
=

MP

MA
=

XP

2MA
and

XP

PS
=

MA

AP
.



From this and the above observation follows

XS

XP
· PT

PB
=

XP

2MA
· PA

PS
=

XP

2MA
· MA

XP
=

1

2
. (1)

Let A′ be the intersection point of the circle O and the perpendicular bisector of the chord
BC such that A,A′ are on the same side of the line BC, and N be the intersection point
of the lines A′Q and CT . Since

∠NCQ = ∠TCB = ∠TCA = ∠TBA = ∠TBP

and

∠CA′Q =
∠CAB

2
=

∠XAP

2
= ∠PAM = ∠SPX,

the triangle NCQ is similar to the triangle TBP and the triangle CA′Q is similar to the
triangle SPX. Therefore

QN

QC
=

PT

PB
and

QC

QA′ =
XS

XP
.

and hence QA′ = 2QN by (1). This implies that N is the midpoint of the line segment
QA′. Let the circle O2 touch the line segment AC at Y . Since

∠ACN = ∠ACT = ∠BCT = ∠QCN

and |CY | = |CQ|, the triangles Y CN and QCN are congruent and hence NY ⊥ AC and
NY = NQ = NA′. Therefore, N is the center of the circle O2, which completes the proof.

Remark : Analytic solutions are possible : For example, one can prove for a triangle ABC
inscribed in a circle O that AB = k(2 + 2t), AC = k(1 + 2t), BC = k(1 + 4t) for some
positive numbers k, t if and only if there exists a circle O1 such that O1 is tangent to the
side AB at its midpoint, the side AC and the circle O.

One obtains AB = k′(1 + 4t′), AC = k′(1 + 2t′), BC = k′(2 + 2t′) by substituting
t = 1/4t′ and k = 2k′t′. So, there exists a circle O2 such that O2 is tangent to the side BC
at its midpoint, the side AC and the circle O.

In the above, t = tan2 α and k = 4R tan α
(1+tan2 α)(1+4 tan2 α)

, where R is the radius of O and

∠A = 2α. Furthermore, t′ = tan2 γ and k′ = 4R tan γ
(1+tan2 γ)(1+4 tan2 γ)

, where ∠C = 2γ. Observe

that
√

tt′ = tan α · tan γ = XS
XP

· PT
PB

= 1
2
, which implies tt′ = 1

4
. It is now routine easy to

check that k = 2k′t′.

Problem 5. In a circus, there are n clowns who dress and paint themselves up using a
selection of 12 distinct colours. Each clown is required to use at least five different colours.
One day, the ringmaster of the circus orders that no two clowns have exactly the same set



of colours and no more than 20 clowns may use any one particular colour. Find the largest
number n of clowns so as to make the ringmaster’s order possible.

(Solution) Let C be the set of n clowns. Label the colours 1, 2, 3, . . . , 12. For each
i = 1, 2, . . . , 12, let Ei denote the set of clowns who use colour i. For each subset S of
{1, 2, . . . , 12}, let ES be the set of clowns who use exactly those colours in S. Since S 6= S ′

implies ES ∩ ES′ = ∅, we have ∑
S

|ES| = |C| = n,

where S runs over all subsets of {1, 2, . . . , 12}. Now for each i,

ES ⊆ Ei if and only if i ∈ S,

and hence
|Ei| =

∑
i∈S

|ES|.

By assumption, we know that |Ei| ≤ 20 and that if ES 6= ∅, then |S| ≥ 5. From this we
obtain

20× 12 ≥
12∑
i=1

|Ei| =
12∑
i=1

(∑
i∈S

|ES|
)
≥ 5

∑
S

|ES| = 5n.

Therefore n ≤ 48.
Now, define a sequence {ci}52

i=1 of colours in the following way:

1 2 3 4 | 5 6 7 8 | 9 10 11 12 |
4 1 2 3 | 8 5 6 7 | 12 9 10 11 |
3 4 1 2 | 7 8 5 6 | 11 12 9 10 |
2 3 4 1 | 6 7 8 5 | 10 11 12 9 | 1 2 3 4

The first row lists c1, . . . , c12 in order, the second row lists c13, . . . , c24 in order, the third
row lists c25, . . . , c36 in order, and finally the last row lists c37, . . . , c52 in order. For each
j, 1 ≤ j ≤ 48, assign colours cj, cj+1, cj+2, cj+3, cj+4 to the j-th clown. It is easy to check
that this assignment satisfies all conditions given above. So, 48 is the largest for n.

Remark : The fact that n ≤ 48 can be obtained in a much simpler observation that

5n ≤ 12× 20 = 240.

There are many other ways of constructing 48 distinct sets consisting of 5 colours. For
example, consider the sets

{1, 2, 3, 4, 5, 6}, {3, 4, 5, 6, 7, 8}, {5, 6, 7, 8, 9, 10}, {7, 8, 9, 10, 11, 12},
{9, 10, 11, 12, 1, 2}, {11, 12, 1, 2, 3, 4}, {1, 2, 5, 6, 9, 10}, {3, 4, 7, 8, 11, 12}.

Each of the above 8 sets has 6 distinct subsets consisting of exactly 5 colours. It is easy to
check that the 48 subsets obtained in this manner are all distinct.
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Problem 1. Let S be a set of 9 distinct integers all of whose prime factors are at most 3.
Prove that S contains 3 distinct integers such that their product is a perfect cube.

Problem 2. Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB > AC. Let
I be the incenter, and H the orthocenter of the triangle ABC. Prove that

2∠AHI = 3∠ABC.

Problem 3. Consider n disks C1, C2, . . . , Cn in a plane such that for each 1 ≤ i < n, the
center of Ci is on the circumference of Ci+1, and the center of Cn is on the circumference
of C1. Define the score of such an arrangement of n disks to be the number of pairs (i, j)
for which Ci properly contains Cj. Determine the maximum possible score.

Problem 4. Let x, y and z be positive real numbers such that
√
x+
√
y+
√
z = 1. Prove

that
x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x+ y)

≥ 1.

Problem 5. A regular (5 × 5)-array of lights is defective, so that toggling the switch for
one light causes each adjacent light in the same row and in the same column as well as
the light itself to change state, from on to off, or from off to on. Initially all the lights are
switched off. After a certain number of toggles, exactly one light is switched on. Find all
the possible positions of this light.

1
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Problem 1. Let S be a set of 9 distinct integers all of whose prime factors are at most 3.
Prove that S contains 3 distinct integers such that their product is a perfect cube.

Solution. Without loss of generality, we may assume that S contains only positive integers.
Let

S = {2ai3bi | ai, bi ∈ Z, ai, bi ≥ 0, 1 ≤ i ≤ 9}.
It suffices to show that there are 1 ≤ i1, i2, i3 ≤ 9 such that

ai1 + ai2 + ai3 ≡ bi1 + bi2 + bi3 ≡ 0 (mod 3). (†)

For n = 2a3b ∈ S, let’s call (a (mod 3), b (mod 3)) the type of n. Then there are 9 possible
types :

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).

Let N(i, j) be the number of integers in S of type (i, j). We obtain 3 distinct integers
whose product is a perfect cube when

(1) N(i, j) ≥ 3 for some i, j, or

(2) N(i, 0)N(i, 1)N(i, 2) 6= 0 for some i = 0, 1, 2, or

(3) N(0, j)N(1, j)N(2, j) 6= 0 for some j = 0, 1, 2, or

(4) N(i1, j1)N(i2, j2)N(i3, j3) 6= 0, where {i1, i2, i3} = {j1, j2, j3} = {0, 1, 2}.
Assume that none of the conditions (1)∼(3) holds. Since N(i, j) ≤ 2 for all (i, j), there

are at least five N(i, j)’s that are nonzero. Furthermore, among those nonzero N(i, j)’s, no
three have the same i nor the same j. Using these facts, one may easily conclude that the
condition (4) should hold. (For example, if one places each nonzero N(i, j) in the (i, j)-th
box of a regular 3 × 3 array of boxes whose rows and columns are indexed by 0,1 and 2,
then one can always find three boxes, occupied by at least one nonzero N(i, j), whose rows
and columns are all distinct. This implies (4).)



Second solution. Up to (†), we do the same as above and get 9 possible types :

(a (mod 3), b (mod 3)) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

for n = 2a3b ∈ S.
Note that (i) among any 5 integers, there exist 3 whose sum is 0 (mod 3), and that (ii)

if i, j, k ∈ {0, 1, 2}, then i+j+k ≡ 0 (mod 3) if and only if i = j = k or {i, j, k} = {0, 1, 2}.
Let’s define

T : the set of types of the integers in S ;
N(i) : the number of integers in S of the type (i, ·) ;
M(i) : the number of integers j ∈ {0, 1, 2} such that (i, j) ∈ T .

If N(i) ≥ 5 for some i, the result follows from (i). Otherwise, for some permutation (i, j, k)
of (0, 1, 2),

N(i) ≥ 3, N(j) ≥ 3, N(k) ≥ 1.

If M(i) or M(j) is 1 or 3, the result follows from (ii). Otherwise M(i) = M(j) = 2. Then
either

(i, x), (i, y), (j, x), (j, y) ∈ T or (i, x), (i, y), (j, x), (j, z) ∈ T

for some permutation (x, y, z) of (0, 1, 2). Since N(k) ≥ 1, at least one of (k, x), (k, y) and
(k, z) contained in T . Therefore, in any case, the result follows from (ii). (For example, if
(k, y) ∈ T , then take (i, y), (j, y), (k, y) or (i, x), (j, z), (k, y) from T .)



Problem 2. Let ABC be an acute angled triangle with ∠BAC = 60◦ and AB > AC. Let
I be the incenter, and H the orthocenter of the triangle ABC. Prove that

2∠AHI = 3∠ABC.

Solution. Let D be the intersection point of the lines AH and BC. Let K be the
intersection point of the circumcircle O of the triangle ABC and the line AH. Let the line
through I perpendicular to BC meet BC and the minor arc BC of the circumcircle O at
E and N , respectively. We have

∠BIC = 180◦ − (∠IBC + ∠ICB) = 180◦ − 1

2
(∠ABC + ∠ACB) = 90◦ +

1

2
∠BAC = 120◦

and also ∠BNC = 180◦ − ∠BAC = 120◦ = ∠BIC. Since IN ⊥ BC, the quadrilateral
BICN is a kite and thus IE = EN .

Now, since H is the orthocenter of the triangle ABC, HD = DK. Also because
ED ⊥ IN and ED ⊥ HK, we conclude that IHKN is an isosceles trapezoid with
IH = NK.

Hence
∠AHI = 180◦ − ∠IHK = 180◦ − ∠AKN = ∠ABN.

Since IE = EN and BE ⊥ IN , the triangles IBE and NBE are congruent. Therefore

∠NBE = ∠IBE = ∠IBC = ∠IBA =
1

2
∠ABC

and thus

∠AHI = ∠ABN =
3

2
∠ABC.

Second solution. Let P,Q and R be the intersection points of BH, CH and AH with
AC, AB and BC, respectively. Then we have ∠IBH = ∠ICH. Indeed,

∠IBH = ∠ABP − ∠ABI = 30◦ − 1

2
∠ABC

and

∠ICH = ∠ACI − ∠ACH =
1

2
∠ACB − 30◦ = 30◦ − 1

2
∠ABC,

because ∠ABH = ∠ACH = 30◦ and ∠ACB+∠ABC = 120◦. (Note that ∠ABP > ∠ABI
and ∠ACI > ∠ACH because AB is the longest side of the triangle ABC under the given
conditions.) Therefore BIHC is a cyclic quadrilateral and thus

∠BHI = ∠BCI =
1

2
∠ACB.



On the other hand,

∠BHR = 90◦ − ∠HBR = 90◦ − (∠ABC − ∠ABH) = 120◦ − ∠ABC.

Therefore,

∠AHI = 180◦ − ∠BHI − ∠BHR = 60◦ − 1

2
∠ACB + ∠ABC

= 60◦ − 1

2
(120◦ − ∠ABC) + ∠ABC =

3

2
∠ABC.



Problem 3. Consider n disks C1, C2, . . . , Cn in a plane such that for each 1 ≤ i < n, the
center of Ci is on the circumference of Ci+1, and the center of Cn is on the circumference
of C1. Define the score of such an arrangement of n disks to be the number of pairs (i, j)
for which Ci properly contains Cj. Determine the maximum possible score.

Solution. The answer is (n− 1)(n− 2)/2.
Let’s call a set of n disks satisfying the given conditions an n-configuration. For an n-

configuration C = {C1, . . . , Cn}, let SC = {(i, j) | Ci properly contains Cj }. So, the score
of an n-configuration C is |SC|.

We’ll show that (i) there is an n-configuration C for which |SC| = (n− 1)(n− 2)/2, and
that (ii) |SC| ≤ (n− 1)(n− 2)/2 for any n-configuration C.

Let C1 be any disk. Then for i = 2, . . . , n − 1, take Ci inside Ci−1 so that the cir-
cumference of Ci contains the center of Ci−1. Finally, let Cn be a disk whose center is on
the circumference of C1 and whose circumference contains the center of Cn−1. This gives
SC = {(i, j) | 1 ≤ i < j ≤ n− 1} of size (n− 1)(n− 2)/2, which proves (i).

For any n-configuration C, SC must satisfy the following properties:

(1) (i, i) 6∈ SC ,

(2) (i + 1, i) 6∈ SC, (1, n) 6∈ SC ,

(3) if (i, j), (j, k) ∈ SC, then (i, k) ∈ SC ,

(4) if (i, j) ∈ SC, then (j, i) 6∈ SC .

Now we show that a set G of ordered pairs of integers between 1 and n, satisfying the
conditions (1)∼(4), can have no more than (n− 1)(n− 2)/2 elements. Suppose that there
exists a set G that satisfies the conditions (1)∼(4), and has more than (n − 1)(n − 2)/2
elements. Let n be the least positive integer with which there exists such a set G. Note
that G must have (i, i + 1) for some 1 ≤ i ≤ n or (n, 1), since otherwise G can have at
most (

n

2

)
− n =

n(n− 3)

2
<

(n− 1)(n− 2)

2

elements. Without loss of generality we may assume that (n, 1) ∈ G. Then (1, n− 1) 6∈ G,
since otherwise the condition (3) yields (n, n−1) ∈ G contradicting the condition (2). Now
let G′ = {(i, j) ∈ G | 1 ≤ i, j ≤ n− 1}, then G′ satisfies the conditions (1)∼(4), with n− 1.

We now claim that |G−G′| ≤ n− 2 :

Suppose that |G−G′| > n− 2, then |G−G′| = n− 1 and hence for each 1 ≤ i ≤ n− 1,
either (i, n) or (n, i) must be in G. We already know that (n, 1) ∈ G and (n − 1, n) ∈ G
(because (n, n − 1) 6∈ G) and this implies that (n, n − 2) 6∈ G and (n − 2, n) ∈ G. If we
keep doing this process, we obtain (1, n) ∈ G, which is a contradiction.



Since |G−G′| ≤ n− 2, we obtain

|G′| ≥ (n− 1)(n− 2)

2
− (n− 2) =

(n− 2)(n− 3)

2
.

This, however, contradicts the minimality of n, and hence proves (ii).



Problem 4. Let x, y and z be positive real numbers such that
√

x +
√

y +
√

z = 1. Prove
that

x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

≥ 1.

Solution. We first note that

x2 + yz√
2x2(y + z)

=
x2 − x(y + z) + yz√

2x2(y + z)
+

x(y + z)√
2x2(y + z)

=
(x− y)(x− z)√

2x2(y + z)
+

√
y + z

2

≥ (x− y)(x− z)√
2x2(y + z)

+

√
y +

√
z

2
. (1)

Similarly, we have

y2 + zx√
2y2(z + x)

≥ (y − z)(y − x)√
2y2(z + x)

+

√
z +

√
x

2
, (2)

z2 + xy√
2z2(x + y)

≥ (z − x)(z − y)√
2z2(x + y)

+

√
x +

√
y

2
. (3)

We now add (1)∼(3) to get

x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

≥ (x− y)(x− z)√
2x2(y + z)

+
(y − z)(y − x)√

2y2(z + x)
+

(z − x)(z − y)√
2z2(x + y)

+
√

x +
√

y +
√

z

=
(x− y)(x− z)√

2x2(y + z)
+

(y − z)(y − x)√
2y2(z + x)

+
(z − x)(z − y)√

2z2(x + y)
+ 1.

Thus, it suffices to show that

(x− y)(x− z)√
2x2(y + z)

+
(y − z)(y − x)√

2y2(z + x)
+

(z − x)(z − y)√
2z2(x + y)

≥ 0. (4)

Now, assume without loss of generality, that x ≥ y ≥ z. Then we have

(x− y)(x− z)√
2x2(y + z)

≥ 0



and

(z − x)(z − y)√
2z2(x + y)

+
(y − z)(y − x)√

2y2(z + x)
=

(y − z)(x− z)√
2z2(x + y)

− (y − z)(x− y)√
2y2(z + x)

≥ (y − z)(x− y)√
2z2(x + y)

− (y − z)(x− y)√
2y2(z + x)

= (y − z)(x− y)

(
1√

2z2(x + y)
− 1√

2y2(z + x)

)
.

The last quantity is non-negative due to the fact that

y2(z + x) = y2z + y2x ≥ yz2 + z2x = z2(x + y).

This completes the proof.

Second solution. By Cauchy-Schwarz inequality,
(

x2

√
2x2(y + z)

+
y2

√
2y2(z + x)

+
z2

√
2z2(x + y)

)
(5)

× (
√

2(y + z) +
√

2(z + x) +
√

2(x + y)) ≥ (
√

x +
√

y +
√

z)2 = 1,

and
(

yz√
2x2(y + z)

+
zx√

2y2(z + x)
+

xy√
2z2(x + y)

)
(6)

× (
√

2(y + z) +
√

2(z + x) +
√

2(x + y)) ≥
(√

yz

x
+

√
zx

y
+

√
xy

z

)2

.

We now combine (5) and (6) to find

(
x2 + yz√
2x2(y + z)

+
y2 + zx√
2y2(z + x)

+
z2 + xy√
2z2(x + y)

)

× (
√

2(x + y) +
√

2(y + z) +
√

2(z + x))

≥ 1 +

(√
yz

x
+

√
zx

y
+

√
xy

z

)2

≥ 2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
.

Thus, it suffices to show that

2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
≥

√
2(y + z) +

√
2(z + x) +

√
2(x + y) . (7)

Consider the following inequality using AM-GM inequality

[√
yz

x
+

(
1

2

√
zx

y
+

1

2

√
xy

z

)]2

≥ 4

√
yz

x

(
1

2

√
zx

y
+

1

2

√
xy

z

)
= 2(y + z),



or equivalently √
yz

x
+

(
1

2

√
zx

y
+

1

2

√
xy

z

)
≥

√
2(y + z) .

Similarly, we have

√
zx

y
+

(
1

2

√
xy

z
+

1

2

√
yz

x

)
≥

√
2(z + x) ,

√
xy

z
+

(
1

2

√
yz

x
+

1

2

√
zx

y

)
≥

√
2(x + y) .

Adding the last three inequalities, we get

2

(√
yz

x
+

√
zx

y
+

√
xy

z

)
≥

√
2(y + z) +

√
2(z + x) +

√
2(x + y) .

This completes the proof.



Problem 5. A regular (5 × 5)-array of lights is defective, so that toggling the switch for
one light causes each adjacent light in the same row and in the same column as well as
the light itself to change state, from on to off, or from off to on. Initially all the lights are
switched off. After a certain number of toggles, exactly one light is switched on. Find all
the possible positions of this light.

Solution. We assign the following first labels to the 25 positions of the lights:

1 1 0 1 1
0 0 0 0 0
1 1 0 1 1
0 0 0 0 0
1 1 0 1 1

For each on-off combination of lights in the array, define its first value to be the sum
of the first labels of those positions at which the lights are switched on. It is easy to
check that toggling any switch always leads to an on-off combination of lights whose first
value has the same parity(the remainder when divided by 2) as that of the previous on-off
combination.

The 90◦ rotation of the first labels gives us another labels (let us call it the second
labels) which also makes the parity of the second value(the sum of the second labels of
those positions at which the lights are switched on) invariant under toggling.

1 0 1 0 1
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
1 0 1 0 1

Since the parity of the first and the second values of the initial status is 0, after certain
number of toggles the parity must remain unchanged with respect to the first labels and
the second labels as well. Therefore, if exactly one light is on after some number of toggles,
the label of that position must be 0 with respect to both labels. Hence according to the
above pictures, the possible positions are the ones marked with ∗i’s in the following picture:

∗2 ∗1

∗0

∗3 ∗4



Now we demonstrate that all five positions are possible :

Toggling the positions checked by t (the order of toggling is irrelevant) in the first
picture makes the center(∗0) the only position with light on and the second picture makes
the position ∗1 the only position with light on. The other ∗i’s can be obtained by rotating
the second picture appropriately.

t t
t

t t t
t t
t t t

t t
t t t t

t
t t t

t
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Problem 1. Let ABC be a triangle with ∠A < 60◦. Let X and Y be the points on the sides
AB and AC, respectively, such that CA+AX = CB +BX and BA+AY = BC +CY . Let
P be the point in the plane such that the lines PX and PY are perpendicular to AB and
AC, respectively. Prove that ∠BPC < 120◦.

Problem 2. Students in a class form groups each of which contains exactly three members
such that any two distinct groups have at most one member in common. Prove that, when
the class size is 46, there is a set of 10 students in which no group is properly contained.

Problem 3. Let Γ be the circumcircle of a triangle ABC. A circle passing through points
A and C meets the sides BC and BA at D and E, respectively. The lines AD and CE meet
Γ again at G and H, respectively. The tangent lines of Γ at A and C meet the line DE at L
and M , respectively. Prove that the lines LH and MG meet at Γ.

Problem 4. Consider the function f : N0 → N0, where N0 is the set of all non-negative
integers, defined by the following conditions :

(i) f(0) = 0, (ii) f(2n) = 2f(n) and (iii) f(2n+ 1) = n+ 2f(n) for all n ≥ 0.

(a) Determine the three sets L := {n | f(n) < f(n+ 1) }, E := {n | f(n) = f(n+ 1) }, and
G := {n | f(n) > f(n+ 1) }.

(b) For each k ≥ 0, find a formula for ak := max{f(n) : 0 ≤ n ≤ 2k} in terms of k.

Problem 5. Let a, b, c be integers satisfying 0 < a < c − 1 and 1 < b < c. For each k,
0 ≤ k ≤ a, let rk, 0 ≤ rk < c, be the remainder of kb when divided by c. Prove that the two
sets {r0, r1, r2, . . . , ra} and {0, 1, 2, . . . , a} are different.
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Problem 1. Let ABC be a triangle with ∠A < 60◦. Let X and Y be the points on the sides
AB and AC, respectively, such that CA + AX = CB + BX and BA + AY = BC + CY . Let
P be the point in the plane such that the lines PX and PY are perpendicular to AB and
AC, respectively. Prove that ∠BPC < 120◦.

(Solution) Let I be the incenter of △ABC, and let the feet of the perpendiculars from I
to AB and to AC be D and E, respectively. (Without loss of generality, we may assume
that AC is the longest side. Then X lies on the line segment AD. Although P may or
may not lie inside △ABC, the proof below works for both cases. Note that P is on the line
perpendicular to AB passing through X.) Let O be the midpoint of IP , and let the feet of
the perpendiculars from O to AB and to AC be M and N , respectively. Then M and N are
the midpoints of DX and EY , respectively.

1



The conditions on the points X and Y yield the equations

AX =
AB + BC − CA

2
and AY =

BC + CA − AB

2
.

From AD = AE =
CA + AB − BC

2
, we obtain

BD = AB − AD = AB − CA + AB − BC

2
=

AB + BC − CA

2
= AX.

Since M is the midpoint of DX, it follows that M is the midpoint of AB. Similarly, N is the
midpoint of AC. Therefore, the perpendicular bisectors of AB and AC meet at O, that is,
O is the circumcenter of △ABC. Since ∠BAC < 60◦, O lies on the same side of BC as the
point A and

∠BOC = 2∠BAC.

We can compute ∠BIC as follows :

∠BIC = 180◦ − ∠IBC − ∠ICB = 180◦ − 1
2
∠ABC − 1

2
∠ACB

= 180◦ − 1
2
(∠ABC + ∠ACB) = 180◦ − 1

2
(180◦ − ∠BAC) = 90◦ +

1
2
∠BAC

It follows from ∠BAC < 60◦ that

2∠BAC < 90◦ +
1
2
∠BAC, i.e., ∠BOC < ∠BIC.

From this it follows that I lies inside the circumcircle of the isosceles triangle BOC because
O and I lie on the same side of BC. However, as O is the midpoint of IP , P must lie outside
the circumcircle of triangle BOC and on the same side of BC as O. Therefore

∠BPC < ∠BOC = 2∠BAC < 120◦.

Remark. If one assumes that ∠A is smaller than the other two, then it is clear that the
line PX (or the line perpendicular to AB at X if P = X) runs through the excenter IC

of the excircle tangent to the side AB. Since 2∠ACIC = ∠ACB and BC < AC, we have
2∠PCB > ∠C. Similarly, 2∠PBC > ∠B. Therefore,

∠BPC = 180◦ − (∠PBC + ∠PCB) < 180◦ −
(

∠B + ∠C

2

)
= 90 +

∠A

2
< 120◦.

In this way, a special case of the problem can be easily proved.

2



Problem 2. Students in a class form groups each of which contains exactly three members
such that any two distinct groups have at most one member in common. Prove that, when
the class size is 46, there is a set of 10 students in which no group is properly contained.

(Solution) We let C be the set of all 46 students in the class and let

s := max{ |S| : S ⊆ C such that S contains no group properly }.

Then it suffices to prove that s ≥ 10. (If |S| = s > 10, we may choose a subset of S consisting
of 10 students.)

Suppose that s ≤ 9 and let S be a set of size s in which no group is properly contained.
Take any student, say v, from outside S. Because of the maximality of s, there should be a
group containing the student v and two other students in S. The number of ways to choose
two students from S is (

s

2

)
≤

(
9
2

)
= 36.

On the other hand, there are at least 37 = 46 − 9 students outside of S. Thus, among those
37 students outside, there is at least one student, say u, who does not belong to any group
containing two students in S and one outside. This is because no two distinct groups have two
members in common. But then, S can be enlarged by including u, which is a contradiction.

Remark. One may choose a subset S of C that contains no group properly. Then, assuming
|S| < 10, prove that there is a student outside S, say u, who does not belong to any group
containing two students in S. After enlarging S by including u, prove that the enlarged S
still contains no group properly.
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Problem 3. Let Γ be the circumcircle of a triangle ABC. A circle passing through points
A and C meets the sides BC and BA at D and E, respectively. The lines AD and CE meet
Γ again at G and H, respectively. The tangent lines of Γ at A and C meet the line DE at L
and M , respectively. Prove that the lines LH and MG meet at Γ.

(Solution) Let MG meet Γ at P . Since ∠MCD = ∠CAE and ∠MDC = ∠CAE, we have
MC = MD. Thus

MD2 = MC2 = MG · MP

and hence MD is tangent to the circumcircle of △DGP . Therefore ∠DGP = ∠EDP .
Let Γ′ be the circumcircle of △BDE. If B = P , then, since ∠BGD = ∠BDE, the tangent

lines of Γ′ and Γ at B should coincide, that is Γ′ is tangent to Γ from inside. Let B ̸= P .
If P lies in the same side of the line BC as G, then we have

∠EDP + ∠ABP = 180◦

because ∠DGP + ∠ABP = 180◦. That is, the quadrilateral BPDE is cyclic, and hence P is
on the intersection of Γ′ with Γ.

4



Otherwise,
∠EDP = ∠DGP = ∠AGP = ∠ABP = ∠EBP.

Therefore the quadrilateral PBDE is cyclic, and hence P again is on the intersection of Γ′

with Γ.
Similarly, if LH meets Γ at Q, we either have Q = B, in which case Γ′ is tangent to Γ

from inside, or Q ̸= B. In the latter case, Q is on the intersection of Γ′ with Γ. In either
case, we have P = Q.
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Problem 4. Consider the function f : N0 → N0, where N0 is the set of all non-negative
integers, defined by the following conditions :

(i) f(0) = 0, (ii) f(2n) = 2f(n) and (iii) f(2n + 1) = n + 2f(n) for all n ≥ 0.

(a) Determine the three sets L := {n | f(n) < f(n + 1) }, E := {n | f(n) = f(n + 1) }, and
G := {n | f(n) > f(n + 1) }.

(b) For each k ≥ 0, find a formula for ak := max{f(n) : 0 ≤ n ≤ 2k} in terms of k.

(Solution) (a) Let

L1 := {2k : k > 0}, E1 := {0} ∪ {4k + 1 : k ≥ 0}, and G1 := {4k + 3 : k ≥ 0}.

We will show that L1 = L, E1 = E, and G1 = G. It suffices to verify that L1 ⊆ E, E1 ⊆ E,
and G1 ⊆ G because L1, E1, and G1 are mutually disjoint and L1 ∪ E1 ∪ G1 = N0.

Firstly, if k > 0, then f(2k) − f(2k + 1) = −k < 0 and therefore L1 ⊆ L.
Secondly, f(0) = 0 and

f(4k + 1) = 2k + 2f(2k) = 2k + 4f(k)
f(4k + 2) = 2f(2k + 1) = 2(k + 2f(k)) = 2k + 4f(k)

for all k ≥ 0. Thus, E1 ⊆ E.
Lastly, in order to prove G1 ⊂ G, we claim that f(n + 1) − f(n) ≤ n for all n. (In fact,

one can prove a stronger inequality : f(n + 1) − f(n) ≤ n/2.) This is clearly true for even n
from the definition since for n = 2t,

f(2t + 1) − f(2t) = t ≤ n.

If n = 2t + 1 is odd, then (assuming inductively that the result holds for all nonnegative
m < n), we have

f(n + 1) − f(n) = f(2t + 2) − f(2t + 1) = 2f(t + 1) − t − 2f(t)
= 2(f(t + 1) − f(t)) − t ≤ 2t − t = t < n.

For all k ≥ 0,

f(4k + 4) − f(4k + 3) = f(2(2k + 2)) − f(2(2k + 1) + 1)
= 4f(k + 1) − (2k + 1 + 2f(2k + 1)) = 4f(k + 1) − (2k + 1 + 2k + 4f(k))
= 4(f(k + 1) − f(k)) − (4k + 1) ≤ 4k − (4k + 1) < 0.

This proves G1 ⊆ G.

(b) Note that a0 = a1 = f(1) = 0. Let k ≥ 2 and let Nk = {0, 1, 2, . . . , 2k}. First we claim
that the maximum ak occurs at the largest number in G ∩ Nk, that is, ak = f(2k − 1). We
use mathematical induction on k to prove the claim. Note that a2 = f(3) = f(22 − 1).

Now let k ≥ 3. For every even number 2t with 2k−1 + 1 < 2t ≤ 2k,

f(2t) = 2f(t) ≤ 2ak−1 = 2f(2k−1 − 1) (†)

by induction hypothesis. For every odd number 2t + 1 with 2k−1 + 1 ≤ 2t + 1 < 2k,

f(2t + 1) = t + 2f(t) ≤ 2k−1 − 1 + 2f(t)
≤ 2k−1 − 1 + 2ak−1 = 2k−1 − 1 + 2f(2k−1 − 1)

(‡)

6



again by induction hypothesis. Combining (†), (‡) and

f(2k − 1) = f(2(2k−1 − 1) + 1) = 2k−1 − 1 + 2f(2k−1 − 1),

we may conclude that ak = f(2k − 1) as desired.
Furthermore, we obtain

ak = 2ak−1 + 2k−1 − 1

for all k ≥ 3. Note that this recursive formula for ak also holds for k ≥ 0, 1 and 2. Unwinding
this recursive formula, we finally get

ak = 2ak−1 + 2k−1 − 1 = 2(2ak−2 + 2k−2 − 1) + 2k−1 − 1
= 22ak−2 + 2 · 2k−1 − 2 − 1 = 22(2ak−3 + 2k−3 − 1) + 2 · 2k−1 − 2 − 1
= 23ak−3 + 3 · 2k−1 − 22 − 2 − 1
...
= 2ka0 + k2k−1 − 2k−1 − 2k−2 − ... − 2 − 1
= k2k−1 − 2k + 1 for all k ≥ 0.
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Problem 5. Let a, b, c be integers satisfying 0 < a < c − 1 and 1 < b < c. For each k,
0 ≤ k ≤ a, let rk, 0 ≤ rk < c, be the remainder of kb when divided by c. Prove that the two
sets {r0, r1, r2, . . . , ra} and {0, 1, 2, . . . , a} are different.

(Solution) Suppose that two sets are equal. Then gcd(b, c) = 1 and the polynomial

f(x) := (1 + xb + x2b + · · · + xab) − (1 + x + x2 + · · · + xa−1 + xa)

is divisible by xc − 1. (This is because : m = n+ cq =⇒ xm −xn = xn+cq −xn = xn(xcq − 1)
and (xcq − 1) = (xc − 1)((xc)q−1 + (xc)q−2 + · · · + 1).) From

f(x) =
x(a+1)b − 1

xb − 1
− xa+1 − 1

x − 1
=

F (x)
(x − 1)(xb − 1)

,

where F (x) = xab+b+1 + xb + xa+1 − xab+b − xa+b+1 − x , we have

F (x) ≡ 0 (mod xc − 1) .

Since xc ≡ 1 (mod xc − 1), we may conclude that

{ab + b + 1, b, a + 1} ≡ {ab + b, a + b + 1, 1} (mod c). (†)

Thus,
b ≡ ab + b, a + b + 1 or 1 (mod c).

But neither b ≡ 1 (mod c) nor b ≡ a + b + 1 (mod c) are possible by the given conditions.
Therefore, b ≡ ab + b (mod c). But this is also impossible because gcd(b, c) = 1.
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Problem 1. Consider the following operation on positive real numbers written on a black-
board: Choose a number r written on the blackboard, erase that number, and then write a
pair of positive real numbers a and b satisfying the condition 2r2 = ab on the board.

Assume that you start out with just one positive real number r on the blackboard, and
apply this operation k2 − 1 times to end up with k2 positive real numbers, not necessarily
distinct. Show that there exists a number on the board which does not exceed kr.

Problem 2. Let a1, a2, a3, a4, a5 be real numbers satisfying the following equations:

a1

k2 + 1
+

a2

k2 + 2
+

a3

k2 + 3
+

a4

k2 + 4
+

a5

k2 + 5
=

1
k2

for k = 1, 2, 3, 4, 5.

Find the value of
a1

37
+

a2

38
+

a3

39
+

a4

40
+

a5

41
. (Express the value in a single fraction.)

Problem 3. Let three circles Γ1, Γ2, Γ3, which are non-overlapping and mutually external,
be given in the plane. For each point P in the plane, outside the three circles, construct
six points A1, B1, A2, B2, A3, B3 as follows: For each i = 1, 2, 3, Ai, Bi are distinct points on
the circle Γi such that the lines PAi and PBi are both tangents to Γi. Call the point P
exceptional if, from the construction, three lines A1B1, A2B2, A3B3 are concurrent. Show
that every exceptional point of the plane, if exists, lies on the same circle.

Problem 4. Prove that for any positive integer k, there exists an arithmetic sequence
a1

b1
,

a2

b2
, . . . ,

ak

bk

of rational numbers, where ai, bi are relatively prime positive integers for each i = 1, 2, . . . , k,
such that the positive integers a1, b1, a2, b2, . . . , ak, bk are all distinct.

Problem 5. Larry and Rob are two robots travelling in one car from Argovia to Zillis. Both
robots have control over the steering and steer according to the following algorithm: Larry
makes a 90◦ left turn after every ` kilometer driving from start; Rob makes a 90◦ right turn
after every r kilometer driving from start, where ` and r are relatively prime positive integers.
In the event of both turns occurring simultaneously, the car will keep going without changing
direction. Assume that the ground is flat and the car can move in any direction.

Let the car start from Argovia facing towards Zillis. For which choices of the pair (`, r) is
the car guaranteed to reach Zillis, regardless of how far it is from Argovia?
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Problem 1. Consider the following operation on positive real numbers written on a black-

board:

Choose a number r written on the blackboard, erase that number, and then write a

pair of positive real numbers a and b satisfying the condition 2r2 = ab on the board.

Assume that you start out with just one positive real number r on the blackboard, and apply

this operation k2 − 1 times to end up with k2 positive real numbers, not necessarily distinct.

Show that there exists a number on the board which does not exceed kr.

(Solution) Using AM-GM inequality, we obtain

1
r2

=
2
ab

=
2ab

a2b2
≤ a2 + b2

a2b2
≤ 1

a2
+

1
b2

. (∗)

Consequently, if we let Sℓ be the sum of the squares of the reciprocals of the numbers written

on the board after ℓ operations, then Sℓ increases as ℓ increases, that is,

S0 ≤ S1 ≤ · · · ≤ Sk2−1. (∗∗)

Therefore if we let s be the smallest real number written on the board after k2−1 operations,

then
1
s2

≥ 1
t2

for any number t among k2 numbers on the board and hence

k2 × 1
s2

≥ Sk2−1 ≥ S0 =
1
r2

,

which implies that s ≤ kr as desired.

Remark. The nature of the problem does not change at all if the numbers on the board

are restricted to be positive integers. But that may mislead some contestants to think the

problem is a number theoretic problem rather than a combinatorial problem.
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Problem 2. Let a1, a2, a3, a4, a5 be real numbers satisfying the following equations:

a1

k2 + 1
+

a2

k2 + 2
+

a3

k2 + 3
+

a4

k2 + 4
+

a5

k2 + 5
=

1
k2

for k = 1, 2, 3, 4, 5.

Find the value of
a1

37
+

a2

38
+

a3

39
+

a4

40
+

a5

41
. (Express the value in a single fraction.)

(Solution) Let R(x) :=
a1

x2 + 1
+

a2

x2 + 2
+

a3

x2 + 3
+

a4

x2 + 4
+

a5

x2 + 5
. Then R(±1) = 1,

R(±2) =
1
4

, R(±3) =
1
9

, R(±4) =
1
16

, R(±5) =
1
25

and R(6) is the value to be found.

Let’s put P (x) := (x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)(x2 + 5) and Q(x) := R(x)P (x). Then for

k = ±1,±2,±3,±4,±5, we get Q(k) = R(k)P (k) =
P (k)
k2

, that is, P (k)− k2Q(k) = 0. Since

P (x) − x2Q(x) is a polynomial of degree 10 with roots ±1,±2,±3,±4,±5, we get

P (x) − x2Q(x) = A(x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25). (∗)

Putting x = 0, we get A =
P (0)

(−1)(−4)(−9)(−16)(−25)
= − 1

120
. Finally, dividing both sides

of (∗) by P (x) yields

1 − x2R(x) = 1 − x2 Q(x)
P (x)

= − 1
120

· (x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25)
(x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4)(x2 + 5)

and hence that

1 − 36R(6) = − 35 × 32 × 27 × 20 × 11
120 × 37 × 38 × 39 × 40 × 41

= − 3 × 7 × 11
13 × 19 × 37 × 41

= − 231
374699

,

which implies R(6) =
187465
6744582

.

Remark. We can get a1 =
1105
72

, a2 = −2673
40

, a3 =
1862
15

, a4 = −1885
18

, a5 =
1323
40

by solving

the given system of linear equations, which is extremely messy and takes a lot of time.
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Problem 3. Let three circles Γ1, Γ2, Γ3, which are non-overlapping and mutually external,

be given in the plane. For each point P in the plane, outside the three circles, construct

six points A1, B1, A2, B2, A3, B3 as follows: For each i = 1, 2, 3, Ai, Bi are distinct points

on the circle Γi such that the lines PAi and PBi are both tangents to Γi. Call the point

P exceptional if, from the construction, three lines A1B1, A2B2, A3B3 are concurrent. Show

that every exceptional point of the plane, if exists, lies on the same circle.

(Solution) Let Oi be the center and ri the radius of circle Γi for each i = 1, 2, 3. Let P be

an exceptional point, and let the three corresponding lines A1B1, A2B2,A3B3 concur at Q.

Construct the circle with diameter PQ. Call the circle Γ, its center O and its radius r. We

now claim that all exceptional points lie on Γ.
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Let PO1 intersect A1B1 in X1. As PO1 ⊥ A1B1, we see that X1 lies on Γ. As PA1 is a

tangent to Γ1, triangle PA1O1 is right-angled and similar to triangle A1X1O1. It follows that

O1X1

O1A1
=

O1A1

O1P
, i.e., O1X1 · O1P = O1A1

2 = r1
2.

On the other hand, O1X1 · O1P is also the power of O1 with respect to Γ, so that

r2
1 = O1X1 · O1P = (O1O − r)(O1O + r) = O1O

2 − r2, (∗)

and hence

r2 = OO2
1 − r2

1 = (OO1 − r1)(OO1 + r1).

Thus, r2 is the power of O with respect to Γ1. By the same token, r2 is also the power of

O with respect to Γ2 and Γ3. Hence O must be the radical center of the three given circles.

Since r, as the square root of the power of O with respect to the three given circles, does not

depend on P , it follows that all exceptional points lie on Γ.

Remark. In the event of the radical point being at infinity (and hence the three radical

axes being parallel), there are no exceptional points in the plane, which is consistent with the

statement of the problem.
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Problem 4. Prove that for any positive integer k, there exists an arithmetic sequence

a1

b1
,

a2

b2
, . . . ,

ak

bk

of rational numbers, where ai, bi are relatively prime positive integers for each i = 1, 2, . . . , k,

such that the positive integers a1, b1, a2, b2, . . . , ak, bk are all distinct.

(Solution) For k = 1, there is nothing to prove. Henceforth assume k ≥ 2.

Let p1, p2, . . . , pk be k distinct primes such that

k < pk < · · · < p2 < p1

and let N = p1p2 · · · pk. By Chinese Remainder Theorem, there exists a positive integer x

satisfying

x ≡ − i (mod pi)

for all i = 1, 2, . . . , k and x > N2. Consider the following sequence :

x + 1
N

,
x + 2

N
, , . . . ,

x + k

N
.

This sequence is obviously an arithmetic sequence of positive rational numbers of length k.

For each i = 1, 2, . . . , k, the numerator x + i is divisible by pi but not by pj for j ̸= i, for

otherwise pj divides |i − j|, which is not possible because pj > k > |i − j|. Let

ai :=
x + i

pi
, bi :=

N

pi
for all i = 1, 2, . . . , k.

Then
x + i

N
=

ai

bi
, gcd(ai, bi) = 1 for all i = 1, 2, . . . , k,

and all bi’s are distinct from each other. Moreover, x > N2 implies

ai =
x + i

pi
>

N2

pi
> N >

N

pj
= bj for all i, j = 1, 2, . . . , k

and hence all ai’s are distinct from bi’s. It only remains to show that all ai’s are distinct from

each other. This follows from

aj =
x + j

pj
>

x + i

pj
>

x + i

pi
= ai for all i < j

by our choice of p1, p2, . . . , pk. Thus, the arithmetic sequence

a1

b1
,

a2

b2
, . . . ,

ak

bk

of positive rational numbers satisfies the conditions of the problem.
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Remark. Here is a much easier solution :

For any positive integer k ≥ 2, consider the sequence

(k!)2 + 1
k!

,
(k!)2 + 2

k!
, . . . ,

(k!)2 + k

k!
.

Note that gcd(k!, (k!)2 + i) = i for all i = 1, 2, . . . , k. So, taking

ai :=
(k!)2 + i

i
, bi :=

k!
i

for all i = 1, 2, . . . , k,

we have gcd(ai, bi) = 1 and

ai =
(k!)2 + i

i
> aj =

(k!)2 + j

j
> bi =

k!
i

> bj =
k!
j

for any 1 ≤ i < j ≤ k. Therefore this sequence satisfies every condition given in the problem.
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Problem 5. Larry and Rob are two robots travelling in one car from Argovia to Zillis. Both

robots have control over the steering and steer according to the following algorithm: Larry

makes a 90◦ left turn after every ℓ kilometer driving from start; Rob makes a 90◦ right turn

after every r kilometer driving from start, where ℓ and r are relatively prime positive integers.

In the event of both turns occurring simultaneously, the car will keep going without changing

direction. Assume that the ground is flat and the car can move in any direction.

Let the car start from Argovia facing towards Zillis. For which choices of the pair (ℓ, r) is the

car guaranteed to reach Zillis, regardless of how far it is from Argovia?

(Solution) Let Zillis be d kilometers away from Argovia, where d is a positive real number.

For simplicity, we will position Argovia at (0, 0) and Zillis at (d, 0), so that the car starts

out facing east. We will investigate how the car moves around in the period of travelling the

first ℓr kilometers, the second ℓr kilometers, . . . , and so on. We call each period of travelling

ℓr kilometers a section. It is clear that the car will have identical behavior in every section

except the direction of the car at the beginning.

Case 1: ℓ − r ≡ 2 (mod 4) . After the first section, the car has made ℓ − 1 right turns and

r− 1 left turns, which is a net of 2(≡ ℓ− r (mod 4)) right turns. Let the displacement vector

for the first section be (x, y). Since the car has rotated 180◦, the displacement vector for

the second section will be (−x,−y), which will take the car back to (0, 0) facing east again.

We now have our original situation, and the car has certainly never travelled further than ℓr

kilometers from Argovia. So, the car cannot reach Zillis if it is further apart from Argovia.

Case 2: ℓ − r ≡ 1 (mod 4) . After the first section, the car has made a net of 1 right turn.

Let the displacement vector for the first section again be (x, y). This time the car has rotated

90◦ clockwise. We can see that the displacements for the second, third and fourth section

will be (y,−x), (−x,−y) and (−y, x), respectively, so after four sections the car is back at

(0, 0) facing east. Since the car has certainly never travelled further than 2ℓr kilometers from

Argovia, the car cannot reach Zillis if it is further apart from Argovia.

Case 3: ℓ − r ≡ 3 (mod 4) . An argument similar to that in Case 2 (switching the roles of

left and right) shows that the car cannot reach Zillis if it is further apart from Argovia.

Case 4: ℓ ≡ r (mod 4) . The car makes a net turn of 0◦ after each section, so it must be

facing east. We are going to show that, after traversing the first section, the car will be at

(1, 0). It will be useful to interpret the Cartesian plane as the complex plane, i.e. writing

x + iy for (x, y), where i =
√
−1. We will denote the k-th kilometer of movement by mk−1,
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which takes values from the set {1, i,−1,−i}, depending on the direction. We then just have

to show that
ℓ r−1∑
k=0

mk = 1,

which implies that the car will get to Zillis no matter how far it is apart from Argovia.

Case 4a: ℓ ≡ r ≡ 1 (mod 4) . First note that for k = 0, 1, . . . , ℓr − 1,

mk = i⌊k/ℓ⌋(−i)⌊k/r⌋

since ⌊k/ℓ⌋ and ⌊k/r⌋ are the exact numbers of left and right turns before the (k + 1)st

kilometer, respectively. Let ak(≡ k (mod ℓ)) and bk(≡ k (mod r)) be the remainders of k

when divided by ℓ and r, respectively. Then, since

ak = k −
⌊

k

ℓ

⌋
ℓ ≡ k −

⌊
k

ℓ

⌋
(mod 4) and bk = k −

⌊
k

r

⌋
r ≡ k −

⌊
k

r

⌋
(mod 4),

we have ⌊k/ℓ⌋ ≡ k − ak (mod 4) and ⌊k/r⌋ ≡ k − bk (mod 4). We therefore have

mk = ik−ak(−i)k−bk = (−i2)ki−ak(−i)−bk = (−i)ak ibk .

As ℓ and r are relatively prime, by Chinese Remainder Theorem, there is a bijection between

pairs (ak, bk) = (k(mod ℓ), k(mod r)) and the numbers k = 0, 1, 2, . . . , ℓr − 1. Hence

ℓ r−1∑
k=0

mk =
ℓ r−1∑
k=0

(−i)ak ibk =

(
ℓ−1∑
k=0

(−i)ak

)(
r−1∑
k=0

ibk

)
= 1 × 1 = 1

as required because ℓ ≡ r ≡ 1 (mod 4).

Case 4b: ℓ ≡ r ≡ 3 (mod 4) . In this case, we get

mk = iak(−i)bk ,

where ak(≡ k (mod ℓ)) and bk(≡ k (mod r)) for k = 0, 1, . . . , ℓr − 1. Then we can proceed

analogously to Case 4a to obtain

ℓ r−1∑
k=0

mk =
ℓ r−1∑
k=0

(−i)ak ibk =

(
ℓ−1∑
k=0

(−i)ak

)(
r−1∑
k=0

ibk

)
= i × (−i) = 1

as required because ℓ ≡ r ≡ 3 (mod 4).

Now clearly the car traverses through all points between (0, 0) and (1, 0) during the first

section and, in fact, covers all points between (n − 1, 0) and (n, 0) during the n-th section.

Hence it will eventually reach (d, 0) for any positive d.

8



To summarize: (ℓ, r) satisfies the required conditions if and only if

ℓ ≡ r ≡ 1 or ℓ ≡ r ≡ 3 (mod 4).

Remark. In case gcd(ℓ, r) = d ̸= 1, the answer is :

ℓ

d
≡ r

d
≡ 1 or

ℓ

d
≡ r

d
≡ 3 (mod 4).
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